首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yin B  Yang X  Wei G  Ma Y  Wei D 《Molecular biotechnology》2008,38(3):241-245
Two genes that encode proteins which share 30–35% sequence identity with yeast OYE (Old Yellow Enzyme, an NAD(P)H FMN-oxidoreductase), the well-studied archetype of the OYE protein family, have been identified in Gluconobacter oxydans M5. The two genes are localized in the chromosome and plasmid, respectively. Comparison of the deduced amino acid sequences of the enzymes with database entries revealed 75.1% similarity and 64.9% identity to that of the Pseudomonas syringae pv. glycinea NAD(P)H-dependent 2-cyclohexen-1-one reductase. The two proteins were expressed as His-tag fusion proteins in Escherichia coli and purified. The ability of the purified proteins to hydrogenate citral was identified. The results showed that the α,β-double bond of citral cis-isomer ‘neral’ could be stereoselectively reduced to produce citronellal by the purified OYE homologues.  相似文献   

2.
The enzyme activities of Clostridium La 1 and Clostridium kluyveri involved in the stereospecific hydrogenation of ,-unsaturated carbonyl compounds with hydrogen gas were measured. In C. La 1 the specific activities of hydrogenase and enoate reductase depended heavily on the growth phase and the composition of the medium. During growth in batch cultures on 70 mM crotonate the specific activity of hydrogenase increased and then dropped to about 10% of its maximum value, whereas the activity of enoate reductase reached its maximum in cells of the stationary phase. Under certain conditions during growth the activity ratio hydrogenase: enoate reductase changed from 120 to 1. Thus, the rate limiting enzyme for the hydrogenation can be either the hydrogenase or the enoate reductase, depending on the growth conditions of the cells.The specific activities of ferredoxin-NAD reductase and butyryl-CoA dehydrogenase increased 3-4-fold during growth on crotonate. By turbidostatic experiments it was shown that at constant input of high crotonate concentrations (200 mM) the enoate reductase activity was almost completely suppressed; it increased steadily with decreasing crotonate down to an input concentration of 35 mM.Glucose as carbon source led to high hydrogenase and negligible enoate reductase activities. The latter could be induced by changing the carbon source of the medium from glucose to crotonate. Tetracycline inhibited the formation of enoate reductase.A series of other carbon sources was tested. They can be divided into ones which result in high hydrogenase and rather low enoate reductase activities and others which cause the reverse effect.When the Fe2+ concentration in crotonate medium was growth limiting, cells with relatively high hydrogenase activity and very low enoate reductase activity in the stationary phase were obtained. At Fe2+ concentrations above 3·10-7 M enoate reductase increased and hydrogenase activity reached its minimum. The ratio of activities changes by a factor of about 200. In a similar way the dependence of enzyme activities on the concentration of sulfate was studied.In batch cultures of Clostridium kluyveri a similar opposite time course of enoate reductase and hydrogenase was found.The possible physiological significance of this behavior is discussed.Non Standard Abbreviations O.D.578 Optical density at 578 nm Dedicated to Professor Dr. O. Kandler on the occasion of his 60th birthday  相似文献   

3.
Carbon-carbon double bond of α,β-unsaturated carbonyl compounds can be reduced by enoate reductase (ER), which is an important reaction in fine chemical synthesis. A putative enoate reductase gene from Lactobacillus casei str. Zhang was cloned into pET-21a+ and expressed in Escherichia coli BL21 (DE3) host cells. The encoded enzyme (LacER) was purified by ammonium sulfate precipitation and treatment in an acidic buffer. This enzyme was identified as a NADH-dependent enoate reductase, which had a K(m) of 0.034 ± 0.006 mM and k(cat) of (3.2 ± 0.2) × 103 s?1 toward NADH using 2-cyclohexen-1-one as the substrate. Its K(m) and k(cat) toward substrate 2-cyclohexen-1-one were 1.94 ± 0.04 mM and (8.4 ± 0.2) × 103 s?1, respectively. The enzyme showed a maximum activity at pH 8.0-9.0. The optimum temperature of the enzyme was 50-55°C, and LacER was relatively stable below 60 °C. The enzyme was active toward aliphatic alkenyl aldehyde, ketones and some cyclic anhydrides. Substituted groups of cyclic α,β-unsaturated ketones and its ring size have positive or negative effects on activity. (R)-(-)-Carvone was reduced to (2R,5R)-dihydrocarvone with 99% conversion and 98% (diasteromeric excess: de) stereoselectivity, indicating a high synthetic potential of LacER in asymmetric synthesis.  相似文献   

4.
Enoate reductase present in Clostridium kluyveri and Clostridium spec. La 1 could be detected in three strains of C. tyrobutyricum and ten clostridia belonging to the groups of proteolytic and saccharolytic or proteolytic species, respectively. In C. pasteurianum, C. butyricum and C. propionicum enoate reductase could not be found even after growth on (E)-2-butenoate. A 2-oxo-carboxylate reductase was present in rather low activities in the non-proteolytic clostridia which produce enoate reductase. High activities (up to 10 U/mg protein) of 2-oxo-carboxylate reductase were found in six of ten proteolytic clostridia. The substrate specificities of the enoate reductase and the 2-oxo-carboxylate reductases from the proteolytic clostridia were determined with different alpha, beta-unsaturated carboxylates (enoates) and 2-oxo-carboxylates, respectively. Enoates as well as 2-oxo-carboxylates are intermediates of the pathway by which amino acids are degraded. An explanation is offered for the long known but not understood fact that in the Stickland reaction isoleucine always acts as an electron donor and leucine and phenylalanine can be electron acceptors as well as donors. Peptostreptococcus anaerobius converting some amino acids to the same products as C. sporogenes did this also with the intermediates which were found for the reductive deamination of amino acids in C. sporogenes, however, in crude extracts reduction of enoates occurred only in an activated form.  相似文献   

5.
A type of shape memory polyurethane with 60 wt% hard segments (SMPU60) was prepared. Its material properties were tested by dynamic mechanical analysis (DMA) and Instron, and simulated using fully atomistic molecular dynamics (MD). The glass transition temperature (T g) of SMPU60 determined by DMA is 316 K, which is slightly lower than that estimated through MD simulations (T g = 328 K) , showing the calculated T g is in good agreement with experimental data. A complex hydrogen bonding network was revealed with the calculation of radial distribution functions (RDFs). The C═O⋯H bond is the predominant hydrogen-bonding interaction. With increasing temperature, both the hydrogen bonding and the moduli decreased, and the dissociation of intermolecular hydrogen bonding induced the decrease of the moduli.  相似文献   

6.
7.
Wild-type cmFDH contains no cystines, hence it is a good candidate to test the hypothesis that thermostability can be achieved by introducing new disulphide bridges. Three cysteine double mutants of cmFDH were designed, using a homology model reported previously, to introduce cystine bridges in the C-domain (T169C–T226C) in the N-domain (V88C–V112C) and between the two monomers (M156C–L159C) to form two cystine bridges across the dimer interface. These mutants were constructed and the proteins were over-expressed in E. coli. The mutants V88C–V112C and M156C–L159C lost FDH activity. The mutant T169C–T226C was both less active and less thermostable than wild-type FDH.  相似文献   

8.
Summary The rate of the bio-electrochemical conversion of crotonic acid into butyric acid by enoate reductase is dependent on the type of viologen used. This illustrates that the reaction between enzyme and mediator, rather than the reaction between enzyme and crotonic acid, is rate limiting. Thus for bio-electrochemical conversion of enoates into saturated chiral acids immobilization of enoate reductase is beneficial from a kinetic point of view. The highest rate constant (k'=7.0×106 M−1.s−1) was measured using mono-N-(aminopropyl) viologen.  相似文献   

9.
Enoate reductase or clostridia containing this enzyme (Clostridium tyrobutyricum or C. kluyveri) catalyse the reduction of alpha,beta-unsaturated aldehydes (enals). The enantiomeric purity of the saturated aldehydes obtained from alpha-substituted enals is usually rather low and depends heavily on the reaction conditions. The reduction of the corresponding allyl alcohols to the saturated alcohols leads to much higher enantiomeric purities, though the reduction of the enal corresponding to the allyl alcohol to the saturated aldehyde is an intermediary step in the reaction sequence allyl alcohol----saturated alcohol. The explanation seems to be the racemisation of saturated aldehydes caused by enoate reductase. This is illustrated by the reduction of (E)-2-methylcinnamyl aldehyde to (R)-2-methyl-3-phenylpropanal or (R)-2-methyl-3-phenylpropanol under different conditions and measuring the racemisation of the aldehyde as well as the hydrogen-deuterium exchange of 3-phenylpropanal. In contrast to saturated carboxylates saturated aldehydes can be dehydrogenated to alpha,beta-unsaturated aldehydes (enals) by enoate reductase in the presence of electron acceptors such as oxygen or dichlorophenol indophenol. Under these conditions enoate reductase shows in the presence of oxygen a surprisingly high half life (greater than 20 h) as compared to that which is observed when the enzyme was used as a reductase with NADH in the presence of oxygen. In this case the enzyme is inactivated within a few minutes.  相似文献   

10.
Bacteria, yeasts and filamentous fungi were screened for enantio-specific reduction of the α, β-unsaturated carbon bond in citral to produce citronellal. While a traditional aqueous screening system revealed only Zymomonas mobilis as positive, citronellal was produced in an aqueous/organic two liquid phase system by 11 of the 46 tested strains, which demonstrates the relevance of applying two-phase systems to screening strategies. Z. mobilis and Citrobacter freundii formed 1 mM citronellal in 3 h in the presence of a NADPH regenerating system and 20% (v/v) toluene. In comparison to these bacteria, the eukaryotic strains showed at least five-fold lower citral reductase activities. The bacterial strains produced preferentially the (S)-enantiomer of citronellal with e.e. values of >99% for Z. mobilis and 75% for Citrobacter freundii. In contrast the yeasts produced preferentially (R)-citronellal, i.e. Candida rugosa with an enantiomeric excess value of more than 98%. Many strains formed alcoholic by-products, viz. geraniol, nerol and citronellol. For Z. mobilis the production of these alcohols was suppressed in the presence of various organic solvents, e.g. toluene, and further decreased after EDTA addition.  相似文献   

11.
The antifungal activity of fourteen novel derivatives of oxindole with side chain was studied using representatives of toxinogenic, phytopathogenic and dermatophytic filamentous fungi. Derivatives with exocyclic C=C bond in position C-3 exhibited a higher antifungal activity compared with derivatives with an exocyclic C−C bond in the same position. The strongest antifungal effects were shown by 3-(-2-thienoylmethylidene)-indol-2(3H)-ones.  相似文献   

12.
Oil-polluted soils were sampled from National Iranian South Oil Company (NISOC) for isolation and screening of C–S and not C–C targeted Dibenzothiophene (DBT) degrading microorganisms. Microbacterium sp. NISOC-06, a C–S targeted DBT degrading bacterium, was selected and its desulfurization ability was studied in aqueous phase and water-gasoline biphasic systems. The 16srRNA gene was amplified using universal eubacteria-specific primers, PCR product was sequenced and the sequence of nearly 1,500 bp 16srDNA was studied. Based on Gas Chromatography results Microbacterium sp. NISOC-06 utilized 94.8% of 1 mM DBT during the 2 weeks of incubation. UV Spectrophotometry and biomass production measurements showed that the Microbacterium sp. NISOC-06 was not able to utilize DBT as a carbon source. There was no accumulation of phenolic compounds as Gibb’s assay showed. Biomass production in a biphasic system for which DBT-enriched gasoline was used as the sulfur source indicated the capability of Microbacterium sp. NISOC-06 to desulfurize gasoline.  相似文献   

13.
Bacterial strains capable of utilizing methylphosphonic acid (MP) or glyphosate (GP) as the sole sources of phosphorus were isolated from soils contaminated with these organophosphonates. The strains isolated from MP-contaminated soils grew on MP and failed to grow on GP. One group of the isolates from GP-contaminated soils grew only on MP, while the other one grew on MP and GP. Strains Achromobacter sp. MPS 12 (VKM B-2694), MP degraders group, and Ochrobactrum anthropi GPK 3 (VKM B-2554D), GP degraders group, demonstrated the best degradative capabilities towards MP and GP, respectively, and were studied for the distribution of their organophosphonate catabolism systems. In Achromobacter sp. MPS 12, degradation of MP was catalyzed by C–P lyase incapable of degrading GP (C–P lyase I). Adaptation to growth on GP yielded the strain Achromobacter sp. MPS 12A, which retained its ability to degrade MP via C–P lyase I and was capable of degrading GP with formation of sarcosine, thus suggesting the involvement of a GP-specific C–P lyase II. O. anthropi GPK 3 also degraded MP via C–P lyase I, but degradation of GP in it was initiated by glyphosate oxidoreductase, which was followed by product transformation via the phosphonatase pathway.  相似文献   

14.
15.
Summary 2E,6Z-Nonadienal, 2E,4E-nonadienal, citral and geraniol as precursors of geranial from acyloins enzymatically by reaction with activated acetate during fermentation by Mucor circinelloides CBS 39 468. The acyloins were reduced immediately by the fungus to (2S,3R)-diols. Reduction of the aldehyde group, including hydrogenation of the conjugated C-C double bond, hydroxylation of these alcohols and of the formed diols and some cyclizations are found as side reactions.  相似文献   

16.
High resolution 13C-detected solid-state NMR spectra of the deuterated beta-1 immunoglobulin binding domain of the protein G (GB1) have been collected to show that all 15N, 13C′, 13Cα and 13Cβ sites are resolved in 13C–13C and 15N–13C spectra, with significant improvement in T 2 relaxation times and resolution at high magnetic field (750 MHz). The comparison of echo T 2 values between deuterated and protonated GB1 at various spinning rates and under different decoupling schemes indicates that 13T 2′ times increase by almost a factor of two upon deuteration at all spinning rates and under moderate decoupling strength, and thus the deuteration enables application of scalar-based correlation experiments that are challenging from the standpoint of transverse relaxation, with moderate proton decoupling. Additionally, deuteration in large proteins is a useful strategy to selectively detect polar residues that are often important for protein function and protein–protein interactions.  相似文献   

17.
Three groups of volatile compounds, i.e., alcohols, aldehydes and esters, were tested for their effects on arthrospore germination and mycelial growth ofGeotrichum candidum citrus race, the causal agent of citrus sour rot. Alcohols (heptanol, octanol, nonanol, decanol, geraniol, citronellol) at a concentration of 1.0 μl/ml showed 60% or more inhibitory effects on both germination and mycelial growth of this pathogen. Among aldehydes tested, only citral had an inhibitory effect of more than 50%, while esters had no effect. The chain length of straight-chain (C6–C12) alcohols correlated with inhibitory effect, and nonanol (C9) was most active. Treatment with alcohols or citral prior to inoculation reduced colonization and maceration of lemon peel by this pathogen by 70% or more. Results suggested that alcohols or citral can probably be used to prevent the development of citrus sour rot.  相似文献   

18.
The secretions of the mandibular and metapleural glands of leaf cutting ants contain antimicrobial substances that protect the mutualistic fungal colony within the nest from attack by parasitic micro-organisms. The major constituents of these secretions (citral, 4-methyl-3-heptanol, 2-heptanone, 3-octanone, 4-methyl-2-heptanone, β-citronellol, geraniol, phenylacetic, indolacetic, hexanoic and octanoic acids were tested against resistant strains of the human pathogens, Escherichia coli, Staphylococcus aureus and Candida albicans. Assays were carried out using filter paper discs impregnated with either hexane or water solutions of the analytes in the concentration range 250–6,000 ng/μl. Although most of the tested compounds presented strong antibacterial and antifungal activities, citral, geraniol, 4-methyl-3-heptanol, hexanoic and octanoic acids were the most effective, particularly against C. albicans. The results suggest that these compounds may be of potential value as antibiotics in the treatment of human candidiasis.  相似文献   

19.
The development of new linkers (handles) for solid-phase synthesis provides new chemical opportunities for peptide synthesis. To understand the chemical properties of a recently developed backbone amide linker from a structural perspective, the crystal structure of S-((5-formyl-3,4-ethylenedioxy)thiophene-2-yl)-3-thiopropionic acid (T-BAL2) was studied. Specifically, we wished to address whether this highly substituted thiophene retained planarity in the aromatic ring as well as between the aromatic ring and the aldehyde carbonyl. Furthermore, we sought an explanation for the relatively low reactivity in reductive aminations of the thienylaldehyde with amines in solution and on solid phase. Based on the crystal structure of T-BAL2, the thienyl-C (aldehyde) and C–O (aldehyde) bond lengths were applied as measures for the electron-deficiency (electrophilicity) of the aldehyde and compared to similar bond lengths found in previously reported formylated homo- and hetero-aromatic systems, which show significantly higher reactivity towards imine formation. The bond lengths found in the present structure are in accordance with normal C–C single bond and C–O double bond lengths. The high similarity in aldehyde bond lengths in the present system and in the reported systems indicates similar electron distribution in these systems. The lower reactivity of the present system may therefore not be attributed to electronic factors.  相似文献   

20.
The CN n ν class of RF pulse schemes, commonly employed for recoupling and decoupling of nuclear spin interactions in magic angle spinning solid state NMR studies of biological systems, involves the application of a basic “C” element corresponding to an RF cycle with unity propagator. In this study, the design of CN n ν symmetry-based RF pulse sequences for achieving 13C–13C double-quantum dipolar recoupling and through bond scalar coupling mediated 13C–13C chemical shift correlation has been examined at high MAS frequencies employing broadband, constant-amplitude, phase-modulated basic “C” elements. The basic elements were implemented as a sandwich of a small number of short pulses of equal duration with each pulse characterised by an RF phase value. The phase-modulation profile of the “C” element was optimised numerically so as to generate efficient RF pulse sequences. The performances of the sequences were evaluated via numerical simulations and experimental measurements and are presented here. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号