首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gas chromatography-mass spectrometric analyses of purified extracts from cultures of Rhizobium phaseoli wild-type strain 8002, grown in a non-tryptophan-supplemented liquid medium, demonstrated the presence of indole-3-acetic acid (IAA), indole-3-ethanol (IEt), indole-3-aldehyde and indole-3-methanol (IM). In metabolism studies with 3H-, 14C- and 2H-labelled substrates the bacterium was shown to convert tryptophan to IEt, IAA and IM; IEt to IAA and IM; and IAA to IM. Indole-3-acetamide (IAAm) could not be detected as either an endogenous constituent or a metabolite of [3H]tryptophan nor did cultures convert [14C]IAAm to IAA. Biosynthesis of IAA in R. phaseoli, thus, involves a different pathway from that operating in Pseudomonas savastanio and Agrobacterium tumefaciens-induced crown-gall tumours.Abbreviations IAA indole-3-acetic acid - IAld indole-3-aldehyde - IAAm indole-3-acetamide - IEt indole-3-ethanol - IM indole-3-methanol - HPLC-RC high-performance liquid chromatography-radio counting - GC-MS gas chromatography-mass spectrometry  相似文献   

2.
Growth on aniline by three purple non-sulfur bacteria (Rhodospirillum rubrum ATCC 11170, Rhodobacter sphaeroides DSM 158, and Rubrivivax benzoatiliticus JA2) as nitrogen, or carbon source could not be demonstrated. However in its presence, production of indole derivatives was observed with all the strains tested. At least 14 chromatographically (HPLC) distinct peaks were observed at the absorption maxima of 275–280 nm from aniline induced cultures. Five major indoles were identified based on HPLC and LC–MS/MS analysis. While tryptophan was the major common metabolite for all the three aniline induced cultures, production of indole-3-acetic acid was observed with Rvi. benzoatilyticus JA2 alone, while indole-3-aldehyde was identified from Rvi. benzoatilyticus JA2 and Rba. sphaeroides DSM 158. Indole-3-ethanol was identified only from Rsp. rubrum ATCC 1170 and anthranilic acid was identified from Rba. sphaeroides DSM 158.  相似文献   

3.
Rubrivivax benzoatilyticus JA2 utilizes l-tryptophan as the sole source of nitrogen for growth, and it has a doubling time of ~11 h (compared to 8 h with ammonium chloride). With cell free extracts in the presence of 2-oxoglutarate, indole-3-pyruvic acid, indole-3-acetaldehyde, indole-3-acetic acid, isatin, benzaldehyde, gallic acid and pyrogallol were identified using high performance liquid chromatography (HPLC) and liquid chromatography–mass spectroscopy (LC–MS) analysis. The conversion of l-tryptophan into indole 3-pyruvic acid and glutamate by an enzyme aminotransferase was confirmed and the catabolism of indole-3-pyruvic acid via side chain oxidation followed by ring oxidation, gallic acid and pyrogallol were confirmed as metabolites. In addition, the proposed pathway sequential conversion of indole-3-pyruvic acid to the end product of pyrogallol was identified, including an enzymatic step that would convert isatin to benzaldehyde by an enzyme yet to be identified. At this stage of the study, the enzyme tryptophan aminotransferase in R. benzoatilyticus JA2 was demonstrated.  相似文献   

4.
Pathogenic strains of Xanthomonas campestris pv. glycines which cause hypertrophy of leaf cells of susceptible soybean cultivars and nonpathogenic strains which do not cause hypertrophy were compared for their ability to produce indole compounds, including the plant hormone indole-3-acetic acid (IAA) in liquid media with or without supplementation with l-tryptophan. Several additional strains of plant-pathogenic xanthomonads and pseudomonads were also tested for IAA production to determine whether in vitro production of IAA is related to the ability to induce hypertrophic growth of host tissues. Indoles present in culture filtrates were identified by thin-layer chromatography, high-performance liquid chromatography, UV spectroscopy, mass spectroscopy, and gas chromatography-mass spectrometry and were quantitated by high-performance liquid chromatography. All strains examined produced IAA when liquid media were supplemented with l-tryptophan. The highest levels of IAA were found in culture filtrates from the common bean pathogen Pseudomonas syringae pv. syringae, and this was the only bacterium tested which produced IAA without addition of tryptophan to the medium. Additional indoles identified in culture filtrates of the various strains included indole-3-lactic acid, indole-3-aldehyde, indole-3-acetamide, and N-acetyltryptophan. Pseudomonads and xanthomonads could be distinguished by the presence of N-acetyltryptophan, which was found only in xanthomonad culture filtrates.  相似文献   

5.
Rubrivivax benzoatilyticus JA2 produces indole derivatives (indoles) from aniline, anthranilate or l-tryptophan. Glucose repressed indole production in R. benzoatilyticus JA2, while malate had no effect. Growth of R. benzoatilyticus JA2 on glucose resulted in decrease in culture pH (6.4) compared with malate (8.4). Growth of R. benzoatilyticus JA2 on sugar carbon sources decreased culture pH (6.4–6.6) and indole production. Further, culture pH of 6.4 repressed the indole production, and pH 8.4 promoted the production irrespective of carbon sources used for growth. Moreover, correlation between indole production and culture pH was observed, where acidic pH inhibited indole production, while alkaline pH promoted the production, suggesting the role of pH in indole production. Tryptophan-catabolizing enzyme activities are significantly high in malate-grown cultures (pH 8.4) compared with that of the glucose (pH 6.4)-grown cultures and corroborated well with indole production, indicating their role in indole production. These results confirm that indole production in R. benzoatilyticus JA2 is pH dependent rather than carbon catabolite repression.  相似文献   

6.
It has been proposed that the eukaryotic T-DNA-encoded indole-3-acetic acid (IAA) biosynthesis genes of Agrobacterium tumefaciens and their prokaryotic counterpart in Pseudomonas savastanoi originated from common ancestor genes. This paper provides additional evidence for the functional similarity between the gene products. We have demonstrated that a chimeric gene consisting of the coding sequence of the P. savastanoi tryptophan-2-mono-oxygenase (iaaM gene) and a plant promoter encodes an active enzyme in Nicotiana tabacum. Transformants obtained with this chimeric gene grew as a callus on hormone-free media. No stably transformed plantlets could be isolated. The callus tissues contained extremely high levels of indole-3-acetamide and slightly elevated levels of IAA. Either indole-3-acetamide by itself has a low auxin activity or, alternatively, it is converted aspecifically and at low rates into IAA. The P. savastanoi tryptophan-2-mono-oxygenase activity in plants is also able to detoxify the amino-acid analogue 5-methyltryptophan. This property can be used for positive selection of transformed calli.Abbreviations BAP 6-benzylaminopurine - IAA indole-3-acetic acid - IAM indole-3-acetamide - NAA naphthalene-1-acetic acid - NPT-II neomycin phosphotransferase II - T-DNA transferred DNA  相似文献   

7.
The in vivo metabolism of L-tryptophan in wound-activated and Agrobacterium tumefaciens , strain C 58, transformed tissues of white potato tubers ( Solanum tuberosum L. cv. Saskia) was investigated. The following metabolites of L-tryptophan were identified in both tissues by co-chromatography with authentic standards in several thinlayer chromotography (TLC) and high pressure liquid chromatographic (HPLC) systems: indole-3-acetic acid (IAA), indole-3-acetaldehyde, indole-3-ethanol, indole-3-acetamide and tryptamine. Labelled indole-3-acetaldoxime was only found in transformed tissue. Crown gall tissue generally incorporated [14C]-L-tryptophan into precursors of IAA at a distinctly higher rate than did wound tissue. Tryptamine and indole-3-ethanol accumulated about ten-fold more label in crown gall cells than in cells from wounded tissue. The incorporation of radioactivity into indole-3-acetamide as determined by 2 consecutive TLC systems followed by HPLC analysis was rather low, though consistently observed in both tissues. An indole-3-acetamide hydrolyzing enzyme, the putative product of gene 2 on the T-DNA, could be extracted from the transformed tissue only. The indole-3-ethanol level was 4.3 nmol (g dry weight)−1 and 41 nmol (g dry weight)−1 for wounded tissue and primary crown gall tissue, respectively, as determined by HPLC with a [14C]-labelled internal standard. The experiments are critically discussed in relation to recent reports on a T-DNA encoded enzyme of IAA biosynthesis in crown gall tumors.  相似文献   

8.
The mutagenicities of 8 indole compounds (indole-3-acetonitrile, indole-3-carbinol, indole-3-acetamide, indole-3-acetic acid, 3-methylindole, indole-3-aldehyde, indole-3-carboxylic acid and indole) derived from indole glucosinolate were studied by mutation tests on Salmonella typhimurium TA98 and TA100 and Escherichia coli WP2 uvrA/pKM101 with and without S9 mix. None of the 8 indole compounds were mutagenic, but they became mutagenic on these 3 tester strains when treated with nitrite at pH 3. The nitrite-treated indole compounds were mutagenic without metabolic activation system (S9 mix), and their mutagenicities were decreased by the addition of S9 mix.  相似文献   

9.
Isoperoxidase B 1 isolated from winter wheat (Triticum aestivum L., cv. Jubilar) seedlings was shown to catalyze ethylene formation from α-keto, γ-methylmercaptobutyric acid (KMBA). In the presence of Mn2+, indole-3-acetic acid (IAA), andp-coumaric acid, the kinetics by isoperoxidase B 1 catalyzed conversion of KMBA into ethylene and other products was similar to that of IAA oxidation. The reaction rate was therefore controlled by IAA through its electrondonating properties. Exogenous IAA induced ethylene formation in the segments of etiolated wheat coleoptiles. IAA-induced ethylene production was enhanced by L-methionine and mitomycin C. Aminoethoxy-analogue of rhizobitoxine, ferulic acid, sodium benzoate, cycloheximide and actinomyoin D exhibited significant inhibitory effects. These data indicate that the overall reaction mechanism in coleoptile segments involves RNA and protein synthesis. The site of IAA action is not specific; 2,4-dichlorophenoxyacetic, α-naphthylacetic and indole-3-butyric acids, respectively, possessed comparable inductive effect as IAA. Indole-3-propionic acid, indole, L-tryptophan and glucobrassicin had only low inductive efficiency, and moreover indole and L-tryptophan slowed down IAA-induced ethylene formation.  相似文献   

10.
Aerobic Methylobacteria Are Capable of Synthesizing Auxins   总被引:1,自引:0,他引:1  
Obligately and facultatively methylotrophic bacteria with different pathways of C1 metabolism were found to be able to produce auxins, particularly indole-3-acetic acid (IAA), in amounts of 3–100 g/ml. Indole-3-pyruvic acid and indole-3-acetamide were detected only in methylobacteria with the serine pathway of C1 metabolism (Methylobacterium mesophilicumand Aminobacter aminovorans).The production of auxins by methylobacteria was stimulated by the addition of L-tryptophan to the growth medium and was inhibited by ammonium ions. The methylobacteria under study lacked tryptophan decarboxylase and tryptophan side-chain oxidase. At the same time, they were found to contain several aminotransferases. IAA is presumably synthesized by methylobacteria through indole-3-pyruvic acid.  相似文献   

11.
Because of the importance of indole-3-acetic acid (IAA) in thegrowth and development of plants, extensive studies of the biosynthesisof IAA have been performed during the four decades since thediscovery of IAA as a plant hormone. The pathway for the biosynthesisof IAA in plants remains, however, to be unelucidated, eventhough studies within the past decade have revealed unexpectedaspects of such biosynthesis. By contrast, two pathways to IAAhave been characterized in bacteria at the molecular level:the indole-3-acetamide (IAM) pathway (L-tryptophan  相似文献   

12.
The regulation of cellular auxin levels is a critical factor in determining plant growth and architecture, as indole-3-acetic acid (IAA) gradients along the plant axis and local IAA maxima are known to initiate numerous plant growth responses. The regulation of auxin homeostasis is mediated in part by transport, conjugation and deconjugation, as well as by de novo biosynthesis. However, the pathways of IAA biosynthesis are yet not entirely characterized at the molecular and biochemical level. It is suggested that several biosynthetic routes for the formation of IAA have evolved. One such pathway proceeds via the intermediate indole-3-acetamide (IAM), which is converted into IAA by the activity of specific IAM hydrolases, such as Arabidopsis AMIDASE1 (AMI1). In this article we present evidence to support the argument that AMI1-dependent IAA synthesis is likely not to be used during the first two days of seedling development.Key words: Arabidopsis thaliana, auxin biosynthesis, AMIDASE1, indole-3-acetic acid, indole-3-acetamide, LEAFY COTYLEDON1, seed developmentAuxins are versatile plant hormones that play diverse roles in regulating many aspects of plant growth and development.1 To enable auxins to develop their activity, a tight spatiotemporal control of cellular indole-3-acetic acid (IAA) contents is absolutely necessary since it is well-documented that auxin action is dose dependent, and that high IAA levels can have inhibitory effects on plant growth.2 To achieve this goal, plants have evolved a set of different mechanisms to control cellular hormone levels. On the one hand, plants possess several pathways that contribute to the de novo synthesis of IAA. This multiplicity of biosynthetic routes presumably facilitates fine-tuning of the IAA production. On the other hand, plants are equipped with a variety of enzymes that are used to conjugate free auxin to either sugars, amino acids or peptides and small proteins, respectively, or on the contrary, that act as IAA-conjugate hydrolases, releasing free IAA from corresponding conjugates. IAA-conjugates serve as a physiologically inactive storage form of IAA from which the active hormone can be quickly released on demand. Alternatively, conjugation of IAA can mark the first step of IAA catabolism. In general, conjugation and deconjugation of free IAA are ways to positively or negatively affect active hormone levels, which adds another level of complexity to the system. Additionally, IAA can be transported from cell to cell in a polar manner, which is dependent on the action of several transport proteins. All together, these means are used to form auxin gradients and local maxima that are essential to initiate plant growth processes, such as root or leaf primordia formation.3  相似文献   

13.
M. Robinson  J. Riov    A. Sharon 《Applied microbiology》1998,64(12):5030-5032
We characterized the biosynthesis of indole-3-acetic acid by the mycoherbicide Colletotrichum gloeosporioides f. sp. aeschynomene. Auxin production was tryptophan dependent. Compounds from the indole-3-acetamide and indole-3-pyruvic acid pathways were detected in culture filtrates. Feeding experiments and in vitro assay confirmed the presence of both pathways. Indole-3-acetamide was the major pathway utilized by the fungus to produce indole-3-acetic acid in culture.  相似文献   

14.
Plants are suggested to produce their major growth promoting phytohormone, indole-3-acetic acid (IAA), via multiple redundantly operating pathways. Although great effort has been made and plenty of possible routes have been proposed based on experimental evidence, a complete pathway for IAA production has yet to be demonstrated. In this study, an in-vitro approach was taken to examine the conversion of l-tryptophan (l-trp) to IAA by gas chromatography-mass spectrometry (GC-MS). Especially the influence of putative reaction intermediates on the enzymatic conversion of l-trp to IAA was analyzed. Among the substances tested only indole-3-acetamide (IAM) showed a pronounced effect on the l-trp conversion. We additionally report that IAM is synthesized from l-trp and that it is further converted to IAA by the utilized cell free Arabidopsis extract. Together, our results underscore the functionality of an IAM-dependent auxin biosynthesis pathway in Arabidopsis thaliana.  相似文献   

15.
The plant pathogenic fungus Colletotrichum gloeosporioides f. sp. aeschynomene utilizes external tryptophan to produce indole-3-acetic acid (IAA) through the intermediate indole-3-acetamide (IAM). We studied the effects of tryptophan, IAA, and IAM on IAA biosynthesis in fungal axenic cultures and on in planta IAA production by the fungus. IAA biosynthesis was strictly dependent on external tryptophan and was enhanced by tryptophan and IAM. The fungus produced IAM and IAA in planta during the biotrophic and necrotrophic phases of infection. The amounts of IAA produced per fungal biomass were highest during the biotrophic phase. IAA production by this plant pathogen might be important during early stages of plant colonization.  相似文献   

16.
Ycsuke  Mino 《Physiologia plantarum》1970,23(5):971-980
Tryptophan (Try) metabolism of Arthrobacter sp. was examined. The inducibility of the Try oxidizing enzyme system seems to be correlated with that of the indole-3-acetic acid (IAA) oxidizing enzyme system. Try is metabolized to IAA via indole-3-pyruvic acid (Ip) and indole-3-acetaldehyde (IAAId). Indole-3-acetamide (IAm) is formed as a product of Try oxidation. Exogenous IAm, indole-3-acetonitrile (IAN) and tryptamine are not oxidized by Try-induced cells.  相似文献   

17.
Biochemical characterization of the recombinant gene products from theArabidopsis glucosyltransferase multigene family has identified one enzyme with high activity toward the plant cellular regulator jasmonic acid (JA). The protein, AtJGT1 (UDP-glucose:JA glucosyltransferase), also has significant activities with other substrates, such as dihydrojasmonicacid, indole-3-acetic acid (IAA), indole-3-propionic acid, and indole-3-butyric acid. TheK M values of AtJGT1 for JA or IAA are similar to those of anArabidopsis IAA glucosyltransferase UGT84B1 previously reported. Northern blot analysis showed thatAtJGTI is highly expressed in the leaves, but only slightly detectable in the roots, stems, and inflorescences. This study describes the first biochemical analysis of a recombinant glucosyltransferase with JA activity, and provides the foundation for future genetic approaches to understanding the role of JA-glucose inArabidopsis.  相似文献   

18.
Auxin is an important plant hormone essential for many aspects of plant growth and development. Indole-3-acetic acid (IAA) is the most studied auxin in plants, and its biosynthesis pathway has been investigated for over 70 years. Although the complete picture of auxin biosynthesis remains to be elucidated, remarkable progress has been made recently in understanding the mechanism of IAA biosynthesis. Genetic and biochemical studies demonstrate that IAA is mainly synthesized from l-tryptophan (Trp) via indole-3-pyruvate by two-step reactions in Arabidopsis. While IAA is also produced from Trp via indole-3-acetaldoxime in Arabidopsis, this pathway likely plays an auxiliary role in plants of the family Brassicaceae. Recent studies suggest that the Trp-independent pathway is not a major route for IAA biosynthesis, but they reveal an important role for a cytosolic indole synthase in this pathway. In this review, I summarize current views and future prospects of IAA biosynthesis research in plants.  相似文献   

19.
【目的】吲哚-3-乙酸是调控植物生长发育和生理活动的重要激素,吲哚-3-乙酸N-乙酰转移酶YsnE在吲哚-3-乙酸合成中发挥重要作用,本研究拟解析解淀粉芽胞杆菌中YsnE参与吲哚-3-乙酸合成的代谢途径。【方法】通过基因ysnE缺失和强化表达,分析ysnE对吲哚-3-乙酸合成影响,结合吲哚-3-乙酸合成中间物(吲哚丙酮酸、吲哚乙酰胺、色胺和吲哚乙腈)添加和体外酶转化实验,解析ysnE参与吲哚-3-乙酸合成的代谢途径。【结果】明确了YsnE在解淀粉芽胞杆菌HZ-12吲哚-3-乙酸合成中发挥重要作用。发现ysnE缺失菌株中的吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈利用显著降低,揭示了YsnE主要发挥吲哚丙酮酸脱羧酶YclB和吲哚乙酰胺水解酶/腈水解酶/腈水合酶YhcX的功能,并通过参与吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈途径来影响吲哚-3-乙酸合成。【结论】初步揭示了YsnE通过影响吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈途径参与吲哚-3-乙酸合成的代谢机理,为吲哚-3-乙酸合成途径解析和代谢工程育种构建吲哚-3-乙酸高产菌株奠定了基础。  相似文献   

20.
生长素合成途径的研究进展   总被引:5,自引:0,他引:5  
生长素是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素, 参与植物生长发育的许多过程。植物和一些侵染植物的病原微生物都可以通过改变生长素的合成来调节植株的生长。吲哚-3-乙酸(IAA)是天然植物生长素的主要活性成分。近年来, 随着IAA生物合成过程中一些关键调控基因的克隆和功能分析, 人们对IAA的生物合成途径有了更加深入的认识。IAA的生物合成有依赖色氨酸和非依赖色氨酸两条途径。依据IAA合成的中间产物不同, 依赖色氨酸的生物合成过程通常又划分成4条支路: 吲哚乙醛肟途径、吲哚丙酮酸途径、色胺途径和吲哚乙酰胺途径。该文综述了近几年在IAA生物合成方面取得的新进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号