首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
C L Borders  J F Riordan 《Biochemistry》1975,14(21):4699-4704
Treatment of rabbit muscle creatine kinase (EC 2.4.3.2) with either butanedione in borate buffer or phenylglyoxal in Veronal buffer decreases enzymatic activity correlating with the modification of a single arginyl residue per subunit of the dimeric enzyme. Very little activity is lost when modification is performed in the presence of MgATP or MgADP. Nucleotide binding to the modified enzyme is virtually abolished as determined by ultraviolet difference spectroscopy. The data suggest that an arginyl residue plays an essential role in the enzymatic mechanism of creatine kinase, probably as a recognition site for the negatively charged oligophosphate moiety of the nucleotide.  相似文献   

2.
GdmCl-induced unfolding of rabbit muscle creatine kinase, CK, has been studied by a variety of physico-chemical methods including near and far UV CD, SEC, intrinsic fluorescence (intensity, anisotropy and lifetime) as well as intensity and lifetime of bound ANS fluorescence. The formation of several stable unfolding intermediates, some of which were not observed previously, has been established. This was further confirmed by representation of fluorescence data in terms of "phase diagram", i.e. I(lambda1) versus I(lambda2) dependence, where I(lambda1) and I(lambda2) are fluorescence intensity values measured on wavelengths lambda(1) and lambda(2) under the different experimental conditions for a protein undergoing structural transformations. The unfolding behavior of CK was shown to be strongly affected by association of partially folded intermediates. A model of CK unfolding, which takes into account both structural perturbations and association of partially folded intermediates has been elaborated.  相似文献   

3.
Rabbit muscle creatine kinase (CK) was modified by 5,5'-dithio-bis(2-nitrobenzoic acid) accompanied by 3 M guanidine hydrochloride denaturation to produce a partially folded state with modified thiol groups. The partially folded CK was in a monomeric state detected by size exclusion chromatography, native-polyacrylamide gel electrophoresis, circular dichroism, and intrinsic fluorescence studies. After dithiothreitol (DTT) treatment, about 70% CK activity was regained with a two-phase kinetic course. Rate constants calculated for regaining of activity and refolding were compared with those for CK modified with various treatments to show that refolding and recovery of activity were synchronized. To further characterize the partially folded CK state and its folding pathway, the molecular chaperone GroEL was used to evaluate whether it can bind with partly folded CK during refolding, and 1-anilinonaphthalene-8-sulfonate was used to detect the hydrophobic surface of the monomeric state of CK. The monomeric state of CK did not bind with GroEL, although it had a larger area of hydrophobic surface relative to the native state. These results may provide different evidence for the structural requirement of GroEL recognition to the substrate protein compared with previously reported results that GroEL bound with substrate proteins mainly through hydrophobic surface. The present study provides data for a monomeric intermediate trapped by the modification of the SH groups during the refolding of CK. Schemes are given for explaining both the partial folding CK pathway and the refolding pathway.  相似文献   

4.
5.
The mechanism of inhibition of creatine kinase (CK) by acrylamide (Acr) has been examined (in vitro). Within the concentration range of 0 to 1 M, Acr markedly inhibited CK and depleted the protein thiols. Both inactivation and thiol depletion were time- and Acr concentration-dependent. Addition of dithiothreitol (DTT) did not reactivate CK inactivated by Acr. However, CK with 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) pre-blocked thiols can be reactivated by DTT after incubation with Acr. The transition-state analogue also had a significant protective effect on CK against Acr inhibition. We conclude that thiol alkylation is a critical event in inactivation of CK by Acr. Furthermore, Acr binding to CK changed its surface charge, which may be the same effect for the toxicity of Acr towards other proteins.  相似文献   

6.
Three crystal forms of rabbit muscle creatine kinase have been grown, one of which seems suited to a high resolution X-ray diffraction study. The first form is of monoclinic space group P21 with a = 54 A?, b = 114 A?, c = 145 A?, β = 91 ° and has as the asymmetric unit two molecules of total molecular weight 160, 000. The second form, grown in the presence of mercurials, is of space group A2 with a = 52 A?, b = 165 A?, c = 237 A?, β = 91 ° and also has two molecules in the asymmetric unit. The third crystal form, grown in the presence of a high concentration of cysteine, is of apparent space group P212121, but evidence indicates that the true space group may be P21221. The dimensions of the orthorhombic unit cell are a = 47 A?, b = 86 A?, c = 125 A?, and the asymmetric unit contains a single protein subunit. Assuming the latter space group, then the creatine kinase molecule possesses a twofold axis relating two identical subunits.  相似文献   

7.
Crystallization is the primary rate-limiting step in protein structure determination. It has been our experience over approximately 10 years that crystals are obtained in about 20% of the proteins attempted and that only about 10% of these crystals are sufficiently well ordered to permit atomic resolution structure analysis. In attempts to overcome this limitation, we have investigated the effect on crystallization of microheterogeneity in a protein regarded as pure by conventional criteria. Creatine kinase was purified from rabbit skeletal muscle and crystallized from methylpentanediol. The protein appeared to be nearly pure judging by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high specific activity. The crystals that were obtained were of poor quality, and an extensive survey of precipitants, crystallization conditions, and additives failed to discover conditions from which usable crystals could be obtained. The enzyme was then subjected to a series of further purification steps. After each purification step, the quality of the crystals obtained under almost identical conditions improved. The final purification step was flat-bed isoelectric focusing. Crystals grown from focused creatine kinase are well ordered and diffract to approximately 3-A resolution.  相似文献   

8.
Two fused proteins of dimeric arginine kinase (AK) from sea cucumber and dimeric creatine kinase (CK) from rabbit muscle, named AK-CK and CK-AK, were obtained through the expression of fused AK and CK genes. Both AK-CK and CK-AK had about 50% AK activity and about 2-fold K m values for arginine of native AK, as well as about 50% CK activity and about 2-fold K m values for creatine of native CK. This indicated that both AK and CK moieties are fully active in the two fused proteins. The structures of AK, CK, AK-CK, and CK-AK were compared by collecting data of far-UV circular dichroism, intrinsic fluorescence, 1-anilinonaphthalene-8-sulfonate binding fluorescence, and size-exclusion chromatography. The results indicated that dimeric AK and CK differed in the maximum emission wavelength, the exposure extent of hydrophobic surfaces, and molecular size, though they have a close evolutionary relationship. The structure and thermodynamic stability of AK, CK, AK-CK, and CK-AK were compared by guanidine hydrochloride (GdnHCl) titration. Dimeric AK was more dependent on the cooperation of two subunits than CK according to the analysis of residual AK or CK activity with GdnHCl concentration increase. Additionally, AK and CK had different denaturation curves induced by GdnHCl, but almost the same thermodynamic stability. The two fused proteins, AK-CK and CK-AK, had similar secondary structure, tertiary structure, molecular size, structure, and thermodynamic stability, which indicated that the expression order of AK and CK genes might have little effect on the characteristics of the fused proteins and might further verify the close relationship of dimeric AK and CK. Published in Russion in Biokhimiya, 2006, Vol. 71, No. 9, pp. 1208–1214.  相似文献   

9.
The effect of limited proteolysis on rabbit muscle creatine kinase.   总被引:4,自引:3,他引:1       下载免费PDF全文
We report a novel assay method for enterokinase capable of detecting approx. 1 fmol of enzyme. The method depends on quantification of the release of specifically radiolabelled activation peptides from bovine trypsinogen and is unaffected by trypsin inhibitors. The assay is applicable to biological fluids such as serum. The substrate was produced by selective epsilon-amidination of bovine trypsinogen followed by acetylation with [3H]acetic anhydride and deprotection. The assay has been used to study the effects of pH, Ca2+, ionic strength abd glycodeoxycholate on enterokinase activity.  相似文献   

10.
Creatine kinase (ATP:creatine N-phosphotransferase, EC 2.7.3.2) is a good model for studying dissociation and reassociation during unfolding and refolding. This study compares self-reassociated CK dimers and CK dimers that contain hybrid dimers under proper conditions. Creatine kinase forms a monomer when denatured in 6 M urea for 1 h which will very quickly form a dimer when the denaturant is diluted under suitable conditions. After modification by DTNB, CK was denatured in 6 M urea to form a modified CK monomer. Dimerization of this modified subunit of CK occurred upon dilution into a suitable buffer containing DTT. Therefore, three different types of reassociated CK dimers including a hybrid dimer can be made from two different CK monomers in the proper conditions. The CK monomers are from a urea-denatured monomer of DTNB-modified CK and from an unmodified urea dissociated monomer. Equal enzyme concentration ratios of these two monomers were mixed in the presence of urea, then diluted into the proper buffer to form the three types of reassociated CK dimers including the hybrid dimer. Reassociated CK dimers including all three different types recover about 75% activity following a two-phase course (k 1 = 4.88 × 10–3 s–1, k 2 = 0.68 × 10–3 s–1). Intrinsic fluorescence spectra of the three different CK monomers which were dissociated in 6 M urea, dissociated in 6 M urea after DTNB modification, and a mixture of the first two dissociated enzymes were studied in the presence of the denaturant urea. The three monomers had different fluorescence intensities and emission maxima. The intrinsic fluorescence maximum intensity changes of the reassociated CK dimers were also studied. The refolding processes also follow biphasic kinetics (k 1 = 3.28 × 10–3 s–1, k 2 = 0.11 × 10–3 s –1) after dilution in the proper solutions. Tsou's method [Tsou (1988), Adv. Enzymol. Rel. Areas Mol. Biol. 61, 381–436] was also used to measure the kinetic reactivation rate constants for the different three types of reassociated CK dimers, with different kinetic reactivation rate constants observed for each type. CK dissociation and reassociation schemes are suggested based on the results.  相似文献   

11.
The reaction of rabbit muscle creatine kinase with diethyl pyrocarbonate was studied. It was found that up to five of the sixteen histidine groups per enzyme subunit could be modified, and under the conditions employed, there was no evidence for formation of the disubstituted derivative of histidine. Evidence was obtained for small but significant amounts of modification of lysine and cysteine groups; tyrosine groups were not modified. Modification of the enzyme led to inactivation; this could be protected against by inclusion of substrates or, more effectively, by inclusion of the combination MgADP plus creatine plus nitrate, which is thought to produce a 'transition-stage-analogue' complex. Analysis of data on the rates of inactivation and the stoicheiometry of modification suggested that there was one essential histidine group per enzyme subunit, modification of which led to inactivation.  相似文献   

12.
13.
The unfolding and refolding of creatine kinase (ATP:creatine N-phosphotransferase (CK), EC 2.7.3.2) during denaturation and reactivation by trifluoroethanol (TFE) have been studied. Significant aggregation was observed when CK was denatured at TFE concentrations between 10% and 40% (v/v). 50% TFE (v/v) was used to study the denaturation and unfolding of CK. The activity loss of CK was a very quick process, as was the marked conformational changes during denaturation followed by fluorescence emission spectra and far-ultraviolet CD spectra. DTNB modification and size exclusion chromatography were used to find that CK dissociated and was in its monomer state after denaturation with 50% TFE. Reactivation and refolding were observed after 80-fold dilution of the denatured CK into 0.05 M Tris-HCl buffer, pH 8.0. The denatured CK recovered about 38% activity following a two phase course (k(1)=4.82+/-0.41x10(-3) s(-1), k(2)=0.60+/-0.01x10(-3) s(-1)). Intrinsic fluorescence maximum intensity changes showed that the refolding process also followed biphasic kinetics (k(1)=4.34+/-0.27x10(-3) s(-1), k(2)=0.76+/-0.02x10(-3) s(-1)) after dilution into the proper solutions. The far-ultraviolet CD spectra ellipticity changes at 222 nm during the refolding process also showed a two phase course (k(1)=4.50+/-0.07x10(-3) s(-1), k(2)=1.13+/-0.05x10(-3) s(-1)). Our results suggest that TFE can be used as a reversible denaturant like urea and GuHCl. The 50% TFE induced CK denaturation state, which was referred to as the 'TFE state', and the partially refolded CK are compared with the molten globule state. The aggregation caused by TFE during denaturation is also discussed in this paper.  相似文献   

14.
15.
The arginine (Arg)-induced unfolding and the salt-induced folding of creatine kinase (CK) have been studied by measuring enzyme activity, fluorescence emission spectra, native polyacrylamide gel electrophoresis and size exclusion chromatography (SEC). The results showed that Arg caused inactivation and unfolding of CK, but there was no aggregation during CK denaturation. The kinetics of CK unfolding followed a one-phase process. At higher concentrations of Arg (>160 mM), the CK dimers were fully dissociated, the alkali characteristic of Arg mainly led to the dissociation of dimers, but not denaturation effect of Arg's guanidine groups on CK. The inactivation of CK occurred before noticeable conformational changes of the whole molecules. KCl induced monomeric and dimeric molten globule-like states of CK denatured by Arg. These results suggest that as a protein denaturant, the effect of Arg on CK differed from that of guanidine and alkali, its denaturation for protein contains the double effects, which acts not only as guanidine hydrochloride but also as alkali. The active sites of CK have more flexibility than the whole enzyme conformation. Monomeric and dimeric molten globule-like states of CK were formed by the salt inducing in 160 and 500 mM Arg H(2)O solutions, respectively. The molten globule-like states indicate that monomeric and dimeric intermediates exist during CK folding. Furthermore, these results also proved the orderly folding model of CK.  相似文献   

16.
The lactic acid induced unfolding and the salt-induced folding of creatine kinase (CK) were studied by enzyme activity, fluorescence emission spectra, circular dichroism spectra, and native polyacrylamide gel electrophoresis. The results showed that the kinetics of CK inactivation was a monophase process. Lactic acid caused inactivation and unfolding of CK with no aggregation during CK denaturation. The unfolding of the whole molecule and the inactivation of CK in solutions of different concentration of lactic acid were compared. Much lower lactic acid concentration values were required to bring about inactivation than were required to produce significant conformational changes of the enzyme molecule. At higher concentrations of lactic acid (more than 0.2 mM) the CK dimers were partially dissociated, as proved by native polyacrylamide gel electrophoresis. NaCl induced the molten globule state with a compact structure after CK was denatured with 0.8 mM lactic acid, and the increasing of anions led to a tight side-chain. The above results suggest that the effect of lactic acid differed from that of other denaturants such as guanidine hydrochloride, HCI, or urea during CK folding, and the molten globule state indicates that intermediates exist during CK folding.  相似文献   

17.
By using sodium dodecyl sulphage/polyacrylamide-gel electrophoresis it was shown that rabbit muscle creatine kinase, both in a homogenate and purified, appears to be composed of a mixture of two peptides (mol.wts. 42100 and 40300) differing in length by about 15 amino acids. It is found that low concentrations of proteinase K from the fungus Tritirachium album can cleave about 38 amino acids from each chain of creatine kinase, leaving two large fragments (mol.wts 37700 and 35500). Scission of the whole enzyme was found to be concomitant with complete loss of enzyme activity. MgADP in the presence of absence of creatine slowed the rate of proteolysis by about 50%, but the transition-state analogue complex creatine-NO3--MgADP appeared to protect completely. The time course for the proteolytic inactivation in the presence of this complex, but not in its absence, was biphasic.  相似文献   

18.
The dimeric enzyme creatine kinase from rabbit muscle was treated with three derivatives of iodoacetamide that are capable of introducing fluorescent groups into the enzyme. All the three reagents (4-iodoacetamidosalicylate (IAS), 5-[N-(iodoacetamidoethyl)amino]-naphthalene-1-sulphonate (IAEDANS) and 6-(4-iodoacetamidophenyl)aminonaphthalene-2-sulphonate (IAANS)) were shown to react at the same single thiol group on each enzyme subunit, leading to complete inactivation of the enzyme. The reaction with IAS was extremely rapid by comparison with the reaction with iodoacetamide or iodoacetate, but various lines of evidence suggest that IAS is not a true affinity label. However, kinetic and binding studies indicate that salicylate itself probably binds at the nucleotide-binding site on the enzyme. As the size of the modifying reagent increased, the first thiol group reacted more rapidly than the second; this trend was more pronounced at 0 degree C than at 25 degree C. With the largest modifying reagent used (IAANS), the pronounced biphasic nature of the modification reaction permitted the preparation of a hybrid enzyme in which only one subunit was modified, but a study of the thiol-group reactivity showed that this hybrid enzyme preparation underwent subunit rearrangement.  相似文献   

19.
The first 20 amino acids from the N-terminus of skeletal muscle (MM) creatine kinase from both rabbit and rhesus monkey have been identified and these sequences show considerable homology. Contrary to an earlier report, the N-terminus was not found to be blocked. Both of these sequences show much less homology with the N-terminal sequence of heart muscle (MM) creatine kinase and no homology with that of the heart muscle mitochondrial (MiMi) isozyme. No homology was found between the N-terminal sequence of the mitochondrial isozyme and the URF (unidentified reading frame) proteins of the human mitochondrial genome, indicating that the mitochondrial enzyme is encoded by nuclear genes. This suggests the possibility that an N-terminal peptide may be cleaved from the mitochondrial isozyme on its translocation across the mitochondrial membrane.  相似文献   

20.
Rabbit muscle pyruvate kinase is inactivated by 2,3-butanedione in borate buffer. The inactivation follows pseudo-first-order kinetics with a calculated second-order rate constant of 4.6 m?1 min?1. The modification can be reversed with almost total recovery of activity by elimination of the butanedione and borate buffer, suggesting that only arginyl groups are modified; this result agrees with the loss of arginine detected by amino acid analysis of the modified enzyme. Using the kinetic data, it was estimated that the reaction of a single butanedione molecule per subunit of the enzyme is enough to completely inactivate the protein. The inactivation is partially prevented by phosphoenolpyruvate in the presence of K+ and Mg2+, but not by the competitive inhibitors lactate and bicarbonate. These findings point to an essential arginyl residue being located near the phosphate binding site of phosphoenolpyruvate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号