首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 105 毫秒
1.
采用封闭式流体压力呼吸计,分别在5-35℃和5-40℃的环境温度范围内测定了白头鹎(Pycnonotussinensis)和丝光椋鸟(Sturnussericeus)的代谢率、热传导和体温等指标,探讨其代谢产热特征。结果显示:在环境温度(Ta)为5-35℃时,白头鹎的体温基本维持恒定,平均温度为40.3±0.1℃,热中性区为26.6-32.8℃,基础代谢率为73.10±4.11mlO2/h,是体重预期值的79%;Ta在5-26℃范围内,代谢率(MR)与Ta呈负相关,回归方程为:MR[mlO2/h]=265.37-7.24Ta(℃);Ta在5-30℃范围内,热传导值最低且基本保持恒定,平均为0.24±0.01mlO2/g·h·℃,是体重预期值的126%。丝光椋鸟的热中性区为27.6-34.5℃,平均体温为40.5±0.1℃(5-40℃),基础代谢率为160.64±9.20mlO2/h,是体重预期值的90%;最低热传导为0.16±0.05mlO2/g·h·℃,是体重预期值的129%。在5-25℃范围内,MR与Ta的回归方程为:MR[mlO2/h]=377.96-7.88Ta(℃)。白头鹎和丝光椋鸟的基本生物学特征为:较高的体温,热传导和上临界温度,较宽的热中性区和较低的代谢率,符合南方小型鸟类的代谢特征.  相似文献   

2.
丝光椋鸟的代谢产热特征及体温调节的日周期变化   总被引:1,自引:0,他引:1  
赵磊  郑立云  张伟  黄迪飞  徐云  柳劲松 《动物学杂志》2013,48(2):269-277,280
为探讨丝光椋鸟(Sturnus sericeuts)代谢产热特征及体温调节的日周期变化,本研究采用开放式氧气分析仪及数字式温度计,测定了丝光椋鸟24 h体温、体重(Mb)和基础代谢率(BMR)的连续变化.结果显示,丝光椋鸟体温、体重及代谢率的日周期变化存在显著差异.丝光椋鸟夜间体温明显低于白昼,其中体温在凌晨5时降至(40.4±0.1)℃;体重昼夜变化明显,且在20:00~次日6:00时雌雄丝光椋鸟体重的下降与时间分别存在明显的线性关系,雌性为Mb=83.46(±0.12)-0.41(±0.02)t(R2=0.992,P<0.01);雄性为Mb =76.74(±0.15)-0.39(±0.02)t(R2=0.986,P<0.01)(式中的t代表时间).丝光椋鸟的BMR在凌晨4时降至最低,为(1.96±0.06) ml/(g·h).结果表明,丝光椋鸟通过内源性的调节,即夜间降低体温、体重及代谢率等途径,调节生理能量平衡,从而适应昼夜环境变化.  相似文献   

3.
Luo Y  Yu TL  Huang CM  Zhao T  Li HH  Li CJ 《动物学研究》2011,32(4):396-402
采用封闭式流体压力呼吸仪,在5~35℃的环境温度范围内测定了黑颈长尾雉(Syrmaticushumiae)和白颈长尾雉(Syrmaticusellioti)的代谢率(MR)、热传导(C)和体温(Tb)等指标,探讨了其代谢产热特征。结果显示:黑颈长尾雉和白颈长尾雉的热中性区(TNZ)分别为24.5~31.6℃和23.0~29.2℃。在5~35℃的温度范围内,黑颈长尾雉和白颈长尾雉能保持稳定的体温,分别为(40.47±0.64)和(40.36±0.10)℃;在热中性区内,黑颈长尾雉和白颈长尾雉的平均基础代谢率(BMR)分别为(1.36±0.84)和(2.03±0.12)mLO2/(g.h),分别是体重预期值的77%和86%。在下临界温度以下,黑颈长尾雉和白颈长尾雉的最小热传导分别是(0.12±0.01)和(0.17±0.01)mLO2/(g.h.℃),分别是体重预期值的119%和124%。这两种鸟的生理生态学特征是:黑颈长尾雉和白颈长尾雉都具有较低的代谢率,较高的体温和热传导,能较好地适应南方湿热的气候特征。  相似文献   

4.
黑腹绒鼠的代谢产热特征及其体温调节   总被引:4,自引:2,他引:4  
为探讨东洋界华中区黑腹绒鼠的代谢产热特征及体温调节,本文采用封闭式流体压力呼吸仪对其代谢率、热传导和体温等热生物学指标进行了测定.结果显示:在环境温度为5~25℃的范围内,黑腹绒鼠的体温基本维持恒定,平均体温为36.5±0.1℃;热中性区为25~30℃;基础代谢率为2.99±0.09 ml O2/(g·h);环境温度(Ta)在5~25℃范围内,代谢率(MR)与Ta呈负相关,回归方程为:MR[ ml O2/(g·h)]= 6.56-0.16 Ta(℃),在此范围内,黑腹绒鼠的热传导率C最低,平均为0.26±0.01 ml O2/(g·h·℃).黑腹绒鼠的基本热生物学特征为:较高的BMR、热传导率和体温以及较宽的热中性区.  相似文献   

5.
为探究草食性小型哺乳动物狭颅田鼠的代谢及体温特征,测定了栖息于呼伦贝尔草原地区的狭颅田鼠的体重、静止代谢率、热传导等生物学指标随环境温度的变化情况。结果表明:狭颅田鼠的平均体重为(20.8±0.8)g(n=12),基础代谢率为(1.85±0.05)mLO_2/(g·h),热中性区为27.5℃~35℃,热传导值为(0.19±0.03)mLO_2/(g·h·℃),热适应能力A<0(适应冷环境),适应途径指数I=0.8(热传导对调节体温影响更大)。狭颅田鼠具有低代谢率、低热传导和较宽的热中性区,在较大的温度变化范围内保持较低的能量代谢水平,这是生活于较高纬度寒冷地区的狭颅田鼠在长期进化过程中形成的主要生存对策之一。  相似文献   

6.
动物能量代谢相关的生理生态特征与其地理分布密切相关。为探讨温州地区迁徙鸟类小杓鹬(Numenius minutus)的代谢产热特征及体温调节,本文在环境温度(Ta)5.0~42.5℃范围内,测定了小杓鹬的代谢率(Rm,以单位时间耗氧量表示,ml/h)和体温,并计算不同环境温度的热传导。结果显示:在环境温度为5~35℃的范围内,小杓鹬的体温维持相对恒定,平均体温为(42.8±0.10)℃;热中性区为27.5~40.0℃;在热中性区温度范围内,代谢率即基础代谢率为(221.31±6.01)ml/h,是体重预期值的141%;环境温度在5.0~27.5℃范围内,代谢率与环境温度(Ta,℃)呈负相关,回归方程为Rm=587.10﹣11.78 Ta;在5.0~27.5℃的环境温度范围内,小杓鹬的热传导最低,平均为(0.11±0.00)ml/(g·h·℃),是体重预期值的212%;代谢预期比和热传导预期比的比值(F值)为1.21,表明该物种有较好的体温调节能力。小杓鹬具有较高的体温和基础代谢...  相似文献   

7.
太平鸟和灰头鹀的代谢产热特征及体温调节   总被引:1,自引:0,他引:1  
采用封闭式流体压力呼吸仪,测定了在环境温度5、10、15、16、18、20、22、25、26、28和30℃时,捕自黑龙江省齐齐哈尔市的太平鸟(Bombycillagarrulus,1♀、7♂)和灰头(Emberizaspodocephala,8♂)的代谢率(MR),计算每个温度点的热传导(C)、MR和C的体重预期值。结果显示:在环境温度(Ta)为5~30℃时,太平鸟的体温(Tb)基本维持恒定,平均Tb为(38·20±0·05)℃;热中性区(TNZ)为18~27℃,基础代谢率(BMR)为(2·33±0·47)mLO2/(g·h);Ta在5~18℃,MR与Ta呈负相关,回归方程为:MR=5·46(±0·19)-0·17(±0·01)Ta;Ta在5~22℃,C最低且基本保持恒定,平均为(0·13±0·00)mLO2/(g·h·℃)。5~30℃时,灰头Tb也基本维持恒定,平均Tb为(38·25±0·05)℃;TNZ为20~26℃,BMR为(4·75±0·18)mLO2/(g·h),最低C为(0·26±0·00)mLO2/(g·h·℃);在5~20℃时,MR与Ta的回归方程为:MR=9·54(±0·52)-0·23(±0·03)Ta。两种鸟具有BMR和Tb较高、下临界温度较低和TNZ较宽、热传导稍高的北方地区小型鸟类的代谢特点,通过自身的物理和化学调节(代谢产热)以更好地适应其生存环境。  相似文献   

8.
采用封闭式流体压力呼吸仪,测定了在环境温度5、10、15、16、18、20、22、25、26、28和30 ℃时,捕自黑龙江省齐齐哈尔市的太平鸟(Bombycilla garrulus,1♀、7♂)和灰头wu(Emberiza spodocephala,8♂)的代谢率(MR),计算每个温度点的热传导?、MR和C的体重预期值。结果显示:在环境温度(Ta)为5~30 ℃时,太平鸟的体温(Tb)基本维持恒定,平均Tb为(38.20±0.05) ℃;热中性区(TNZ)为18~27 ℃,基础代谢率(BMR)为(2.33±0.47)mL O.2/(g·h);Ta在5~18 ℃,MR与Ta呈负相关,回归方程为:MR=5.46(±0.19)-0.17(±0.01)Ta;Ta在5~22 ℃,C最低且基本保持恒定,平均为(0.13±0.00)mL O.2/(g·h·℃)。5~30 ℃时,灰头wu Tb也基本维持恒定,平均Tb为(38.25±0.05) ℃; TNZ为20~26 ℃,BMR为(4.75±0.18)mL O.2/(g·h),最低C为(0.26±0.00)mL O.2/(g·h· ℃);在5~20 ℃时,MR与Ta的回归方程为:MR=9.54(±0.52)-0.23(±0.03)Ta。两种鸟具有BMR和Tb较高、下临界温度较低和TNZ较宽、热传导稍高的北方地区小型鸟类的代谢特点,通过自身的物理和化学调节(代谢产热)以更好地适应其生存环境。  相似文献   

9.
为探讨食虫目小型哺乳动物的代谢产热和体温调节特征,本文采用封闭式流体压力呼吸仪测定了北小麝鼩在环境温度5 ~ 30℃下的静止代谢率(RMR),结果显示:在环境温度(Ta)为17 5 ~25℃ 的范围内,北小麝鼩的体温基本维持恒定,平均体温为36.55 ± 0.38℃ ;热中性区(TNZ) 为20 ~ 25℃ ;基础代谢率BMR 为5.46 ±0.23 (mLO2 /g· h),其中环境温度在25℃ 时静止代谢率最低,为4.84 ± 0.39 (mLO2 /g· h)。在5 ~ 25℃环境温度范围内,热传导值保持稳定;在此温度范围内,北小麝鼩的热传导率(C) 最低,平均为0.42 ± 0.01mLO2 / (g·h·℃ )。总之,北小麝鼩的产热和体温调节特征为较高的BMR,中等的热传导率,较低的体温和较宽的热中性区。这些特征可能与该物种体型小、夜行性、主要以无脊椎动物为食等生活习性密切相关。  相似文献   

10.
为探讨不同地区中缅树鼩Tupaia belangeri的生理生态适应特征,对其体温调节和产热特征进行了测定,代谢率采用开放式呼吸仪进行测定。结果显示:A组中缅树鼩(禄劝县屏山镇)的体温(T b)与环境温度(T a)的关系为T b=38.0+0.07T a;B组中缅树鼩(昆明团结乡)的体温与环境温度的关系为T b=38.3+0.05T a;热中性区分别为3035℃和27.535℃和27.535℃;基础代谢率分别为(1.40±0.03)mL/(g·h)和(1.66±0.06)mL/(g·h);平均最小热传导为(0.14±0.0034)mL/(g·h·℃)和(0.15±0.0041)mL/(g·h·℃);热中性区内F值,即(RMR/Kleiber期望RMR)/(C/Bradley期望C),分别为0.91±0.01和1.14±0.03。结果表明,昆明中缅树鼩较禄劝中缅树鼩有较高的基础代谢率和较宽的热中性区,并且有较好的调节体温的能力;它们的这种产热特征和体温调节方式的不同可能与它们的生活史和栖息地环境有关。  相似文献   

11.
1 Metabolic rates (Vo2), body temperature (Tb), and thermal conductance (C) were first determined in newly captured Maximowiczi's voles (Microtus maximowiczii) and Djungarian hamsters (Phodopus campbelli) from the Inner Mongolian grasslands at a temperature range from 5 to 35 °C.

2 The thermal neutral zone (TNZ) was between 25 and 32.5 °C for Maximowiczi's voles and between 25 and 30 °C for Djungarian hamsters. Mean Tb was 37.0±0.1 °C for voles and 36.2±0.1 °C for hamsters. Minimum thermal conductance was 0.172±0.004 ml O2/g h °C for voles and 0.148±0.003 ml O2/g h °C for hamsters.

3 The mean resting metabolic rate within TNZ was 2.21±0.05 ml O2/g h in voles and 2.01±0.07 ml O2/g h in hamsters. Nonshivering thermogenesis was 5.36±0.30 ml O2/g h for voles and 6.30±0.18 ml O2/g h for hamsters.

4 All these thermal physiological properties are adaptive for each species and are shaped by both macroenvironmental and microenvironmental conditions, food habits, phylogeny and other factors.

Keywords: Basal metabolic rate; Body temperature; Djungarian hamster (Phodopus campbelli); Maximowiczi's vole (Microtus maximowiczii); Nonshivering thermogenesis; Minimum thermal conductance  相似文献   


12.
内蒙古浑善达克沙地小毛足鼠的能量代谢和体温调节   总被引:2,自引:5,他引:2  
战新梅  王德华 《兽类学报》2004,24(2):152-159
为了解小毛足鼠对沙漠生境的适应特征,对其能量代谢和体温调节特征进行了测定。代谢率采用封闭式流体压力呼吸计测定,非颤抖性产热用皮下注射去甲肾上腺素诱导,能量摄入采用食物平衡法测定。结果显示:小毛足鼠的热中性区为25~33℃,平均体温为35 7±0 1℃,最小热传导率为0 21±0 01mlO2/g·h·℃,基础代谢率为2 61±0 04mlO2/g·h,最大非颤抖性产热为8 53±0 28mlO2/g·h,非颤抖性产热范围(最大非颤抖性产热与基础代谢率的比率)为3 3。基础代谢率和非颤抖性产热都高于以体重为基础的期望值,最小热传导接近期望值。小毛足鼠的摄入能为2 26±0 12kJ/g·d;消化能为2 18±0 13kJ/g·d;消化率为97±0 2%;可代谢能为2 13±0 12kJ/g·d;可代谢能效率为94±1 2%。这些结果表明小毛足鼠对沙地生境的适应特征是:基础代谢率较高,体温相对较低,最小热传导率与期望值相当,热中性区较宽,下临界温度较低;较高的最大非颤抖性产热和非颤抖性产热范围以及较高的食物消化效率。  相似文献   

13.
东北地区黑线仓鼠的代谢产热特征及其体温调节   总被引:14,自引:0,他引:14  
为探讨寒冷地区黑线仓鼠 (Cricetulusbarabensis)的代谢产热特征及体温调节 ,本文采用封闭式流体压力呼吸仪对其代谢率、热传导和体温等热生物学指标进行了测定。结果显示 :在环境温度为 5~ 35℃的范围内 ,黑线仓鼠的体温基本维持恒定 ,平均体温为 36 33± 0 2 3℃ ;热中性区为 2 5~ 32 5℃ ;基础代谢率为 3 4 9±0 36mlO2 / (g·h) ;环境温度 (Ta)在 5~ 2 5℃范围内 ,代谢率 (MR)与Ta 呈负相关 ,回归方程为 :MR [mlO2 / (g·h) ]=9 6 0 - 0 2 2Ta (℃ ) ,在此范围内 ,黑线仓鼠的热传导率 (C)最低 ,平均为 0 2 8± 0 0 1mlO2 /(g·h·℃ ) ;代谢预期比和热传导预期比 (F值 )为 1 6 8。黑线仓鼠的基本热生物学特征为 :较高的BMR和热传导率 ,相对较低的体温和较宽的热中性区。这些特征可能限制了其在极端寒冷和干旱环境中的分布和生存.  相似文献   

14.
To better understand the physiological characteristics of the silky starling(Sturnus sericeus), its body temperature(Tb), basal metabolic rate(BMR), evaporative water loss(EWL) and thermal conductance(C) elicited by different ambient temperatures(Ta)(5-30 °C) were determined in the present study. Our results showed that they have a high Tb(41.6±0.1 °C), a wide thermal neutral zone(TNZ)(20-27.5 °C) and a relatively low BMR within the TNZ(3.37±0.17 mL O2/g·h). The EWL was nearly stable below the TNZ(0.91±0.07 mg H2O/g·h) but increased remarkably within and above the TNZ. The C was constant below the TNZ, with a minimum value of 0.14±0.01 mL O2/g·h·°C. These findings indicate that the BMR, Tb and EWL of the silky starling were all affected by Ta, especially when Ta was below 20 °C and the EWL plays an important role in thermal regulation.  相似文献   

15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号