首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Sugar beet molasses was used as carbon source forSaccharomyces cerevisiae growth and as substrate for bioconversion to fructose diphosphate. The highest level of fructose diphosphate (26.6 g/L) was reached after 10 h incubation of permeabilized cells under appropiate molasses and phosphate to cell ratio and represented a 64% yield of bioconversion.  相似文献   

2.
Abstract

Soyasapogenols, aglycones of soyasaponins, can be produced from crude soybean saponin extract by acid or enzymatic hydrolysis. Soyasapogenol B is known to have hepatoprotective, antimutagenic, antivirus, and anti-inflammatory activities. Hydrolysis of soyabean saponin extract for 72 h with 2 M HCl in methanol gave three soyasapogenols, namely: soyasapogenol D, soyasapogenol B1 and soyasapogenol A. However, the microbial hydrolysis of soybean saponin extract by Aspergillus terreus led to isolation of soyasapogenol B as a major product. A systematic evaluation of the effect of key operational parameters on the microbial transformation was performed. Maximum production of soyasapogenol B (about 152.3 mg/50ml) was observed using 1.5% (w/v) soybean saponin and 1.5% (w/v) glucose, 32°C after 72 h at pH 7 using phosphate buffer. Under these optimal conditions, the cells’ bioconversion efficiency increased from 20.5 to 85.3%. The isolation of soyasapogenols was performed using chromatographic methods and their structures identified on the basis of spectroscopic tools.  相似文献   

3.
4.
Switchgrass is a promising feedstock to generate fermentable sugars required for the sustainable operation of biorefineries because of their abundant availability, easy cropping system, and high cellulosic content. The objective of this study was to investigate the potentiality of switchgrass as an alternative sugar supplier for free fatty acid (FFA) production using engineered Escherichia coli strains. Recombinant E. coli strains successfully produced FFAs using switchgrass hydrolysates. A total of about 3 g/L FFAs were attained from switchgrass hydrolysates by engineered E. coli strains. Furthermore, overall yield assessments of our bioconversion process showed that 88 and 46% of the theoretical maximal yields of glucose and xylose were attained from raw switchgrass during sugar generation. Additionally, 72% of the theoretical maximum yield of FFAs were achieved from switchgrass hydrolysates by recombinant E. coli during fermentation. These shake‐flask results were successfully scaled up to a laboratory scale bioreactor with a 4 L working volume. This study demonstrated an efficient bioconversion process of switchgrass‐based FFAs using an engineered microbial system for targeting fatty acid production that are secreted into the fermentation broth with associated lower downstream processing costs, which is pertinent to develop an integrated bioconversion process using lignocellulosic biomass. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:91–98, 2018  相似文献   

5.
Metabolically engineered Escherichia coli MEC143 with deletions of the ptsG, manZ, glk, pfkA, and zwf genes converts pentoses such as arabinose and xylose into glucose, with the dephosphorylation of glucose‐6‐phosphate serving as the final step. To determine which phosphatase mediates this conversion, we examined glucose formation from pentoses in strains containing knockouts of six different phosphatases singly and in combination. Deletions of single phosphatases and combinations of multiple phosphatases did not eliminate the accumulation of glucose from xylose or arabinose. Overexpression of one phosphatase, haloacid dehalogenase‐like phosphatase 12 coded by the ybiV gene, increased glucose yield significantly from 0.26 to 0.30 g/g (xylose) and from 0.32 to 0.35 g/g (arabinose). Growing cells under phosphate‐limited steady‐state conditions increased the glucose yield to 0.39 g glucose/g xylose, but did not affect glucose yield from arabinose (0.31 g/g). No single phosphatase is exclusively responsible for the conversion of glucose‐6‐phosphate to glucose in E. coli MEC143. Phosphate‐limited conditions are indeed able to enhance glucose formation in some cases, with this effect likely influenced by the different phosphate demands when E. coli metabolizes different carbon sources.  相似文献   

6.
《Process Biochemistry》1999,34(5):417-420
The deacylation of Pen G was carried out by using recombinant E. coli in an aqueous two-phase system consisting of polyethylene glycol and potassium phosphate solution, which partitions the cells to the bottom phase and the products to the top phase. Bioconversion and product separation were carried out in the same reactor. Repeated batch conversion was employed ten times and enzymic activity showed only a slight decline. When pure enzyme was used for bioconversion in an aqueous two-phase system, the decline was fast and bioconversion using whole cell penicillin acylase was better than that obtained using the pure acylase.  相似文献   

7.
The asymmetric biosynthesis of ethyl (S)-4-chloro-3-hydrobutanoate from ethyl 4-chloro-3-oxobutanoate was investigated by using whole cells ofCandida magnoliae JX120-3 without the addition of glucose dehydrogenase or NADP+/NADPH. In a one-phase system, the bioconversion yield was seriously affected on the addition of 12.1 g/L ethyl 4-chloro-3-oxobutanoate. In order to reduce this substrate inhibition, a water/n-butyl acetate two-phase system was developed, and the bioreduction conditions optimized with regard to the yield and product enantiometric excess value. The optimal conditions were as following: water ton-butyl acetate volume ratio of 1∶1, 4.0 g DCW/L active cells, 50 g/L glucose and 35°C. By adopting a dropwise substrate feeding strategy, high concentration of ethyl 4-chloro-3-oxobutanoate (60 g/L) could be asymmetrically reduced to ethyl (S)-4-chloro-3-hydrobutanoate with high yield (93.8%) and high enantiometric excess value (92.7%).  相似文献   

8.
The one-step bioconversion of cis-epoxysuccinate (CES) to l(+)-tartaric acid by dried Rhodococcus rhodochrous cells containing CES hydrolase activity was studied by using a continuous bioconversion process. The influence of the pH and the temperature was assessed. A mathematical model was used to quantify the CES hydrolase activity and stability. The optimal pH, which resulted in a maximal CES hydrolase activity and stability, was pH 8.0. A large increase in stability (half-life time) could be obtained when the temperature was decreased from 37 to 14°C during the continuous bioconversion. A total bioconversion was maintained for more than 100 days. This resulted in a large value for the specific productivity since the effect of the large increase in stability was much more important than the decrease of activity at the lower temperature. This continuous bioconversion process was further optimised by calculating the productivity for several continuously stirred tank reactors in series. The specific productivity could be nearly doubled when the number of reactors in the series was increased from 1 to 4.  相似文献   

9.
High-density cultures of Pycnoporus cinnabarinus were tested with a view to optimisation of ferulic acid bioconversion into vanillin. The dry weight was increased fourfold by using glucose, fructose or a mixture of glucose and phospholipids as carbon source instead of maltose, the carbon source previously used. 5 mmol l−1 vanillin, i.e. 760 mg l−1, was produced over 15 days with glucose-phospholipid medium. In contrast, formation of vanillin was lower using glucose or fructose compared to the maltose control. A bioreactor (2 l) with a glucose-phospholipid medium gave a molar yield of vanillin of 61% (4 mmol l−1). An alternative strategy was to grow the fungus on a glucose or fructose medium for 3 days, then switch to maltose during the bioconversion phase: this method allowed 3.3 mmol l−1 vanillin to be obtained in 10 days. Many by-products such as methoxyhydroquinone and vanillyl alcohol were also produced. Received: 19 February 1999 / Received revision: 4 June 1999 / Accepted: 4 June 1999  相似文献   

10.
Heterotrophic growth of microalgae presents significant economic advantages over the more common autotrophic cultivation. The efficiency of growth and nitrogen, phosphorus, and glucose uptake from synthetic wastewater was compared under heterotrophic, autotrophic, and mixotrophic regimes of Chlorella vulgaris Beij. immobilized in alginate beads, either alone or with the bacterium Azospirillum brasilense. Heterotrophic cultivation of C. vulgaris growing alone was superior to autotrophic cultivation. The added bacteria enhanced growth only under autotrophic and mixotrophic cultivations. Uptake of ammonium by the culture, yield of cells per ammonium unit, and total volumetric productivity of the culture were the highest under heterotrophic conditions when the microalga grew without the bacterium. Uptake of phosphate was higher under autotrophic conditions and similar under the other two regimes. Positive influence of the addition of A. brasilense was found only when light was supplied (autotrophic and mixotrophic), where affinity to phosphate and yield per phosphate unit were the highest under heterotrophic conditions. The pH of the culture was significantly reduced in all regimes where glucose was consumed, similarly in heterotrophic and mixotrophic cultures. It was concluded that the heterotrophic regime, using glucose, is superior to autotrophic and mixotrophic regimes for the uptake of ammonium and phosphate. Addition of A. brasilense positively affects the nutrient uptake only in the two regimes supplied with light.  相似文献   

11.
At present, there is little information on the optimization of the degradation of polycyclic aromatic hydrocarbons (PAH) by deuteromycete filamentous fungi, a reaction catalyzed by cytochrome P450 monooxygenases. We utilized response-surface methodology to determine the optimal growth conditions for the oxidation of the PAH pyrene by Penicillium janthinellum SFU403, with respect to the variables glucose concentration, nitrate concentration and bioconversion time. Models were derived for the relationship between the variables tested and the level of the pyrene oxidation products, 1-pyrenol (1-PY) and pyrenequinones (PQ). Production of 1-PY and PQ were optimized by the same glucose and nitrate concentrations: 2.5% glucose and 1.5% sodium nitrate. The optimized 1-PY and PQ bioconversion times were 71 h and 73 h respectively. These conditions improved the yield of 1-PY by fivefold and PQ were more than 100-fold higher than the baseline levels obtained in this study. The optimized PQ yield represented 95% of the initial pyrene, thus the total optimised pyrene bioconversion to 1-PY and PQ was approximately 100%. Concentrations of glucose exceeding 4.0% repressed pyrene hydroxylation. Pyrene hydroxylation occurred almost exclusively during the deceleration phase of culture growth. Received: 20 July 1998 / Received revision: 7 December 1998 / Accepted: 10 January 1999  相似文献   

12.
Summary The level of glutathione S-transferase (GSH0ST) activity was determined in growing cultures and in washed resting cells of Beauveria strains with and without addition of isosorbide dinitrate (ISDN), by following the reaction with o-dinitrobenzene (o-DNB). The level of GSH-ST varied according to the pH changes of the medium and decreased during culture. The enzymatic activity measured with o-DNB did not correlate with ISDN bioconversion carried out either with B. sulfurescens or B. tenella. Immediately after starting incubation of the resting cells with ISDN, the level of GSH-ST activity initially increased, but declined afterwards, whereas the bioconversion process continued and reached 500 mg/l isosorbide 5-mononitrate. When 1-chloro-2,4-dinitrobenzene was used as a substrate for the evaluation of GSH-ST activity using B. tenella, a conjugation product having a UV absorption at 410 nm was formed.  相似文献   

13.
Summary The formation of citric acid, oxalic acid, erythritol and glycerol by three strains of Aspergillus niger immobilized in calcium alginate was investigated and compared with that of free cells when cultivated in shake flasks under phosphate limitation. Morphological changes were followed using an electron microscope. The production of acids and polyols, the consumption of glucose and fructose, and also the morphological changes were strain-dependent. The results also reflected the influence of long storage of a strain on productivity, morphological behaviour and phosphate consumption. Offprint requests to: H.-J. Rehm  相似文献   

14.
The objectives of this study were to examine the effects of growth substrate and extracellular pH on phosphoenolpyruvate-dependent glucose phosphorylation as well as to examine how maltose is phosphorylated by the ruminal bacterium Megasphaera elsdenii B159. Phosphoenolpyruvate-dependent glucose phosphorylation by toluene-treated cells was constitutive, and glucose phosphorylation was reduced by 69% at pH 5.0. When toluene-treated cells were incubated in histidine buffer, little maltose phosphorylation occurred in the absence of inorganic phosphate. However, the addition of increasing concentrations of either potassium or sodium phosphate increased maltose phosphorylation. Maximal phosphorylation activity was observed at between 25 and 50 mM of either inorganic phosphate source. Compared with the control incubations, maltose phosphorylation was increased over threefold with 25 mM of either potassium or sodium phosphate. Phosphoglucomutase activity was detected in cell extracts of M. elsdenii B159, and this enzyme had a K m of 3.2 mM for glucose-1-P and a V max of 1836 nmol of NADP+ reduced/mg of protein per min. Maltose was also hydrolyzed by an inducible maltase (K m , 1.19 mM). To our knowledge, this is the first report of a maltose phosphorylase and a maltase in M. elsdenii. Received: 3 November 1999 / Accepted: 5 January 2000  相似文献   

15.
16.
31P-NMR measurements of saturation transfer have been used to measure phosphate consumption in respiratory competent cells of the yeast Saccharomyces cerevisiae. Measurements of oxygen consumption and maintenance of the cells in a metabolic steady state during the NMR experiments were facilitated by immobilisation of the cells in an agarose gel matrix which could be perfused in the NMR spectrometer. The contribution of glycolysis to the observed rate of phosphate consumption was estimated by simultaneously measuring glucose consumption and ethanol production in the perfusion buffer. The remaining phosphate consumption, which was attributed to flux through the reaction catalysed by the mitochondrial ATP synthase, combined with measurements of oxygen consumption allowed estimation of a P:O ratio (mol ATP synthesised:atoms oxygen consumed) which was close to 3.  相似文献   

17.
Streptomyces sp GE44282 was isolated in the course of a screening program for novel antibiotics. It co-produces heneicomycin and aurodox, two kirromycin-type antibiotics, which differ by the presence of an hydroxyl group at the C30 position of aurodox. Heneicomycin is converted into aurodox both by growing and resting cells ofStreptomyces sp GE44282 and by the producer of aurodox,Streptomyces goldiniensis ATCC 21386. This bioconversion of heneicomycin is substrate-specific and is not observed using the producer of heneicomycin,Streptomyces filippiniensis NRRL 11044. The three strains show very similar taxonomic characteristics. These results suggest that heneicomycin is a precursor of aurodox, the production of which depends on the bioconversion capability expressed by the strain.  相似文献   

18.
Proteins of the glucose-starvation stimulon were identified by using two-dimensional gel electrophoresis and the gene–protein database of Escherichia coli. Members of this stimulon Included enzymes of the Embden–Meyerhof–Parnas (EMP) pathway, phosphotransacetylase (Pta) and acetate kinase (AckA) of the acetyl phosphate/acetate production pathway, and formate transacetytase. The synthesis of these enzymes was found to be Induced concomitantly with the decreased synthesis of enzymes of the Krebs cycle. Thus, the modulation in the synthesis of specific proteins during aerobic glucose starvation is, In part, similar to the response of cells shifted to anaerobiosis. These modulations suggest that the glucose-starved cell increases the relative flow of carbon through the Pta–AckA pathway. Indeed, the ability to synthesize acetyl phosphate, an intermediate of the pathway, appears to be indispensable for glucose-starved cells as pta and ptaackA double mutants were found to be impaired in their ability to survive glucose starvation. The survival characteristics of ackA mutants and the wild-type parent were indistinguishable. Moreover, the pta mutant failed to induce several proteins of the glucose-starvation stimulon.  相似文献   

19.
Summary The effects of citrate on diacetyl, acetoin and 2,3-butylene glycol (2,3-BG) production by Leuconostoc mesenteroides subsp. cremoris grown in continuous culture at pH 5.2 were studied. In glucose alone end-product production agreed with the theoretical stoichiometry. In the presence of citrate, lactate and acetate production was higher than the theoretical stoichiometry from glucose. Lactate production was constant when the initial citrate concentration was increased whereas ethanol production strongly decreased. In the absence of citrate, citrate lyase (CL) exhibited weak activity. Diacetyl reductase (DR) and acetoin reductase (AR) exhibited basal activity. When varying citrate concentrations ranging from 10 to 75 mm were added to glucose broth, DR, AR, lactate dehydrogenase, NADH oxidase and alcohol dehydrogenase decreased as the initial citrate concentration increased suggesting that they were partly repressed by citrate. In contrast, CL increased and the specific citrate utilization rate also increased in the same way, indicating no saturation of the first step of citrate metabolism. Acetate kinase (AK) was slightly higher in the presence of citrate and increased when the initial citrate concentration increased. This result was correlated with an increase of acetate from the acetyl phosphate pathway. More ATP was produced in the presence of citrate, which could explain the increase in biomass formation. Citrate bioconversion into diacetyl, acetoin and 2,3-BG increased as the initial citrate increased. Correspondence to: C. Diviès  相似文献   

20.
Ethyl(R)-4-chloro-3-hydroxybutanoate ((R)-CHBE) are obtained by cetyltrimetylammonium bromide (CTAB) permeabilized fresh brewer’s yeast whole cells bioconversion of ethyl 4-chloro-3-oxobutanoate (COBE ) in the presence of allyl bromide. The results showed that the activities of alcohol dehydrogenase (ADH) and glucose-6-phosphate dehydrogenase (G6PDH) in CTAB permeabilized brewer’s yeast cells increased 525 and 7.9-fold, respectively, compared with that in the nonpermeabilized cells and had high enantioselectivity to convert COBE to (R)-CHBE. As one of co-substrates, glucose-6-phosphate was preprepared using glucose phosphorylation by hexokinase-catalyzed of CTAB permeabilized brewer’s yeast cells. In a two phase reaction system with n-butyl acetate as organic solvent and with 2-propanol and glucose-6-phosphate as co-substrates, the highest (R)-CHBE concentration of 447 mM was obtained with 110–130 g/l of the CTAB permeabilized cells at optimized pH, temperature, feeding rate and the shake speed of 125 r/min. The yield and enantiomeric excess (ee) of (R)-CHBE reached 99.5 and 99%, respectively, within 6 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号