首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The effect of healing on the proximodistal organization of regenerates from double-half forelimbs was studied. Double-anterior and double-posterior upper forelimbs were prepared surgically and amputated at 5, 10, 15, 20, 30, and 60 days after grafting. All experimental groups regenerated hypomorphic skeletal patterns. Double-half forelimbs amputated at Days 5 and 10 regenerated more distally complete skeletal patterns than did limbs amputated at Days 30 and 60. The mean numbers of skeletal elements regenerated were seen to decrease as a function of time after grafting, with the maximal suppression of skeletal patterns observed to occur when limbs were amputated 30 days following grafting. There was no appreciable difference between limbs amputated at Days 30 and 60. These results suggest that healing time has a profound effect on the proximodistal organization of limbs regenerated from double-half forelimb stumps.  相似文献   

2.
It is well documented that growth hormone (GH) replacement therapy will restore normal limb regeneration to hypophysectomized adult newts. However, it is also known that the GH preparations used in previous reports were contaminated by other pituitary hormones shown to support regeneration when administered free of GH. The recent availability of bioengineered human GH was studied for its ability to restore the regenerative capacity to hypophysectomized newts. Five days posthypophysectomy adult newts were subject to forelimb amputation distal to the elbow. Animals were divided into three groups (n greater than 20). Each received one of three GH preparations: pituitary-derived bovine GH, pituitary-derived human GH, or bioengineered human GH. GH was administered via intraperitoneal injection (0.029 IU/50 microliters) on alternate days for either the first 5 days (total of 3 injections) or for 35 days (total of 18 injections). Pituitary-intact and hypophysectomized control newts were subjected to forelimb amputation and injected with hormone diluent. All newts that received GH demonstrated normal limb regeneration to the early digitiform stage by 35 days postamputation. None of the hypophysectomized control newts showed any evidence of regeneration. We conclude that GH alone can restore the ability to undergo normal limb regeneration to hypophysectomized newts.  相似文献   

3.
Although capable of initiating early regenerative responses, axolotl forelimb stumps which are composed of double-half limb tissues fail to undergo the events that normally lead to the replacement of missing parts. In the present study, the posterior halves of right forelimbs were exchanged with the anterior halves of left forelimbs, or the dorsal halves of right forelimbs were exchanged with the ventral halves of left forelimbs. Forelimbs were amputated through the graft region 30 days after grafting. Limb stumps bearing double-dorsal, double-ventral or double-posterior tissues either produced hypomorphic regenerates or failed to form any externally visible outgrowth. When the limb stump bore double-anterior tissues, no externally visible structures were formed. Normal and multiple regenerates were never formed by double-half limbs. These results are discussed in terms of the polar coordinate model and suggest that the regeneration blastema requires a complete circumference of positional values in order to complete distal transformation.  相似文献   

4.
The limb regenerative capacity and the quantity of innervation (the percentage of a cross-sectional area of amputation forelimb stump occupied by nerves) in the pond frog, Rana brevipoda porosa, was investigated in postmetamorphic froglets and adults of various sizes by means of amputating forelimbs through the zeugopodium. Nearly all the amputated limbs of newly metamorphosed froglets, 18-19 mm in snout-vent length, showed heteromorphic regeneration. However, the larger the body size, the lower the presence of limb regeneration. Limb regenerative capacity was completely lost in froglets and adults with snout-vents larger than 35 mm. The quantity of innervation of limbs was highest in newly metamorphosed froglets, gradually decreasing with growth. The nerve quantity in adults with a snout-vent length between 60-67 mm was approximately half that of the froglets. When the nerve supply was augmented by deviating ipsilateral sciatic nerve bundles to the forelimb stump, almost all limbs, which were usually non-regenerative with normal innervation, regenerated heteromorphically. These results show that the decline in limb regenerative capacity during postmetamorphic growth is in part attributable to the reduction in innervation levels to below the threshold level required for regeneration.  相似文献   

5.
The effect of hypophysectomy, growth hormone (GH) and an amino acid-glucose mixture on the regenerative ability of the hypophysectomized Triturus pyrrhogaster yielded the following results:
  • 1 The survival time of hypophysectomized newts can be prolonged substantially by the sulfamide application.
  • 2 Although the limb regeneration in the hypophysectomized newt is retarded as compared with that of the pituitary intact control, it finally completes morphogenetic process under such conditions of prolonged survival.
  • 3 The injection of 100 μg of GH restored the speed of regeneration of pituitary-deprived limbs to almost a normal level.
  • 4 Injections of the amino acid-glucose mixture also promoted the limb regeneration in hypophysectomized newts. However, initial delay in regeneration to the time of bud appearance was not restored by the nutrients.
  相似文献   

6.
Summary The relationship between the size and shape of regenerative outgrowth and the quantity of innervation was studied in adult Xenopus laevis. The forelimbs, of which the nerve supply was artificially altered, were amputated midway through the stylopodium and were kept for 1 year. The regenerative outgrowths that formed in normal limbs with an intact nerve supply were mainly spike-shaped and occasionally rod-shaped. However, when the nerve supply to the distal part of the forelimb was augmented by surgically diverting ipsilateral sciatic nerve bundles, the quantity of innervation was increased to about two and a half times that of the normal limb. These hyperinnervated outgrowths were somewhat larger than those of the normally innervated outgrowths and the majority of them were oar-shaped, a type hardly ever encountered in normal regeneration. In contrast, when partial denervation was performed concomitantly with limb amputation, by ablation of the N. radialis at the shoulder joint, the quantity of innervation decreased to about one half that of the normal limb. The outgrowths obtained were spike-shaped in all cases, with their size being about half that of the normally innervated outgrowths. Furthermore, when both the N. radialis and N. ulnaris were ablated in the same way, the amputated limbs were mostly non-regenerative, but some of them regenerated small conical outgrowths. Based on these results, a discussion is presented concerning the relationship between a regenerative outgrowth and the innervation of the forelimb in Xenopus.  相似文献   

7.
Untreated adult newts do not undergo normal limb regeneration following hypohysectomy. A fibrocellular dermal barrier (cicatrix) atypically forms between the apical epithelium and the underlying mesenchymal tissues. Historically, continuous administration of growth hormone or of prolactin in combination with thyroxine restored regenerative capacity to these newts. In a previous investigation, we demonstrated that the initial effect of these two hormone treatments, when administered on alternate days to hypophysectomized newts beginning eight days post-amputation, was to facilitate the erosion of the fibrocellular barrier and establish the epithelial mesenchymal interface that is observed in a regenerating limb. The present investigation was designed to evaluate the necessity of continuous hormone therapy to maintain limb regeneration in hypophysectomized newts. One, two, or three injections of growth hormone or of prolactin in combination with thyroxine was administered on successive alternate days to hypophysectomized newts either immediately following limb amputation (ID) or beginning eight days post-amputation (DD). The ID and DD newts receiving one, two, or three injections of growth hormone showed evidence of regeneration to the digitiform stage by day 30 post-amputation, while those receiving prolactin and thyroxine underwent wound healing. While both hormone treatments initially promoted a dermis-free apical epithelium, only hypophysectomized newts that had received growth hormone were able to continue regenerating. We have, therefore, concluded that discontinuous growth hormone therapy is sufficient to initiate and maintain the conducive environment for limb regeneration to advanced stages in the hypophysectomized newt. While initiating this process, prolactin and thyroxine therapy on a discontinuous regime does not maintain regeneration. The direct and indirect role of growth hormone in supporting limb regeneration in normal and hypophysectomized newts is discussed.  相似文献   

8.
The influence of the wound epithelium on the cellular events preceding blastema formation was examined by comparing dedifferentiation, DNA labeling indices, and mitotic indices of the distal mesodermal tissues in control regenerating newt forelimbs and in amputated forelimbs covered with a flap of full thickness skin. Three kinds of results were seen following the skin-flap graft operations. Epidermal migration across the amputation surface was completely inhibited in 22% (8) of the cases and these limbs repaired the amputation wound but did not form regeneration blastemas. In 11% (4) of the experimental limbs, essentially normal wound epithelia displaced the skin flaps and the limb stumps formed blastemas and regenerated. The majority of the skin grafts (67%) exhibited epidermal migration restricted to the free edges of the flaps. These limbs formed eccentric blastemas on the ventral side of the limb next to the dermis-free epidermis and regenerated laterally in that direction.  相似文献   

9.
It has been demonstrated recently that upper forelimbs of axolotls comprised of symmetrically arranged soft tissues do not regenerate (P. W. Tank, 1978,J. Exp. Zool.204, 325–336). These double-half forelimb stumps contained skin, muscle, and loose connective tissues in symmetrical arrangement. The present study explores the roles of muscle, skin, and epidermis in the regeneration of double-half forelimbs by grafting them separately to create forelimb stumps bearing symmetrical arrangements of these individual tissues. Forelimb stumps bearing symmetrically arranged flexor and extensor muscles and normally arranged skin underwent complete regeneration (96%). Forelimbs comprised of double-half skin overlying normally arranged muscles and deep tissues formed hypomorphic structures and nonregenerates (56%) with some single and multiple regenerates. Limbs with double-half deep tissues and complete epidermis either regenerated distally incomplete patterns (47%), single patterns (33%), or multiple patterns (20%). Those forelimbs comprised of double-half skin and no muscle regenerated incomplete patterns in the majority of cases (56%) but single and multiple limbs also were formed. Based on these results it can be concluded that no single type of tissue is solely responsible for the regenerative failure experienced by double-half forelimbs in the earlier study. The complete failure of forelimb regeneration occurs only when all types of soft tissues tested (skin, muscle, and deep connective tissues) are present in symmetrical arrangement.  相似文献   

10.
Regeneration blastemas were exchanged between surgically constructed forelimbs comprised of symmetrical tissues (double-anterior and double-posterior) and normal, unoperated forelimbs. Normal blastemas grafted at the stage of medium bud (MB) onto double-half forelimb stumps regenerated normal skeletal patterns in nearly all cases. Double-half blastemas transplanted at the stage of MB onto normal forelimb stumps did not regenerate complete limb patterns. These results indicate that a double-half blastema cannot be “rescued” by transplantation to a normal stump and that a double-half limb stump does not interfere with the ability of a normal blastema to distally transform. The regeneration blastema possesses sufficient positional information at the stage of MB to permit it to develop autonomously. Supernumerary forelimbs resulted from several types of graft-stump combinations. The location and handedness of these supernumerary limbs are predicted by the rules of a recently presented model for pattern regulation in epimorphic fields [French, V., Bryant, P. J., and Bryant, S. V. (1976). Science193, 969–981].  相似文献   

11.
中华真地鳖的断足再生   总被引:2,自引:0,他引:2  
报道了中华真地鳖Eupolyphaga sinensis Walker的断足再生特征。研究结果表明,不同虫龄期的若虫都有断足再生能力;足的不同部位断足后均能再生;断掉不同数量的足后,只要能成活均可再生。断足再生后,继续断掉再生足的原位或其他部位也可以再生。再生足的跗节均比正常的少一节,具有再生不完整性。断足后,只要经1~2次蜕皮,均可再生。断掉一对足的腿节后,再生足出现大小不一的现象,小的一般发育不全,断足数量多容易出现再生足发育不全。再生足比正常足要小,但生长速度要快,断掉足的腿节或跗节后的再生足经过2次蜕皮后基本可恢复到正常足大小。  相似文献   

12.
The use of hormone replacement to support limb regeneration in hypophysectomized newts has been the subject of many investigations. Growth hormone, as well as prolactin (PL) in combination with exogenously supplied thyroxine, have all been shown to he effective. However, the bovine growth hormone used to support limb regeneration was contaminated by prolactin and thyroidstimulating hormone (TSH). The present investigation evaluates the significance of (1) prolactin contamination and (2) endogenous thyroxine synthesis resulting from TSH contamination on limb regeneration in hypophysectomized newts. The effect of supplying exogenous thyroxine was also evaluated. Our studies showed that when hypophysectomized newts were injected with contamination levels of PL and TSH, regeneration occurred, suggesting that the newt's thyroid synthesized sufficient thyroxine to support a prolactin-thyroxine synergism. The endogenous thyroxine was synthesized by thyroid glands that were indistinguishable from those of saline-injected, hypophysectomized controls.  相似文献   

13.
In order to study endocrine influence upon cholinesterase activity during regeneration, adult newts were hypophysectomized either prior to limb transection or during regeneration. Homogenates of limb tissues were assayed for cholinesterase activity during each stage of regeneration.In animals with pituitaries intact, cholinesterase activity in regenerating limb tissues decreases soon after amputation, and then it rises to the level of activity in intact limbs of normal animals, during the period of differentiation. In hypophysectomized newts there seems to be no alteration of this basic pattern of activity, but removal of the pituitary does result in more elevated levels of enzymatic activity. In the intact forelimbs of control newts undergoing regeneration, cholinesterase activity greatly increases as the other transected limb begins to regenerate but it returns to normal as regeneration progresses. If these animals are hypophysectomized, no such increase is observed during the early stages of regeneration. Rather, there is an initial decrease in cholinesterase activity that is followed by an increase in such activity.These data are compatible with the hypothesis that the pituitary modulates cholinesterase activity in the limb tissues of adult newts.  相似文献   

14.
Summary Thyroidectomy and organ culture of adult newt thyroid glands three days prior to forelimb amputation was followed by autografting the glands subcutaneously into the animal's lower jaw region 9, 18 or 25 days postamputation (GC9, 18, 25 day series). This was an attempt, utilizing 515 animals, to elucidate further the role of the thyroids in regeneration. Amputated limbs of the thyroidectomized (Thx) and autografted muscle explant (MC = sham) cases underwent stumping or were significantly delayed in their regeneration rate and displayed abnormal morphogenesis compared with control regenerates. In the GC9 series newts, regenerates were identical to controls 45 days postamputation. However, regenerates of the GC18 series cases exhibited delayed and abnormal development at 45 days; but they were not as delayed and had fewer abnormalities than those cases in the Thx and MC groups. Results of the GC25 series newts were similar to those of the Thx group. Within 5 days of autografting the thyroids, epidermal moulting resumed and long-term survival ensued. We conclude that normal limb regeneration in the adult newt is thyroid hormone(s) dependent, specifically the later stages of growth, differentiation and morphogenesis.Supported by grant A-1208 from the Natural Sciences and Engineering Research Council of Canada to R.A.L.  相似文献   

15.
Summary During the summers of 1984 and 1985, adult red-spotted newts,Notophthalmus viridescens, were maintained in the laboratory at 23°±0.5°C under natural photoperiods. From each of the experimental animals, the right forelimb was amputated just proximal to the elbow. Control newts were not manipulated surgically. Eight, 15, and 22 days after the time of amputation, equal numbers of regenerating and control animals were sacrificed, and blood smears of each individual were prepared with Wright's stain.Mean differential counts of leukocytes of the two groups of newts indicated that the relative number of neutrophils increased and the relative number of lymphocytes decreased in the regenerating animals as compared to their controls (Fig. 1 and Fig. 2). Earlier studies had shown that lymphopenia and neutrophilia occur in red-spotted newts treated with hydrocortisone or with ACTH or subjected to environmental stress (Bennett and Daigle 1983). Consequently, it is suggested that amputation and/or early regeneration may stimulate the increased production of hormones associated with stress in vertebrates, which may, in turn, influence regeneration, itself, and that the detailed study of the distribution of leukocytes inNotophthalmus viridescens may provide an assay with which to study the regulation of regeneration in this species.  相似文献   

16.
Grafts of posterior tissue placed anterior to the limb bud in the salamander embryo exert a polarizing influence. To explain this result, the idea that the anteroposterior axis of the developing forelimb is polarized by a diffusible morphogen has been proposed. An alternative hypothesis, and the working hypothesis of the present study, is that the polarization of the developing salamander forelimb is accomplished by short-range cellular interactions resulting in intercalation rather than by the more global influence of a diffusible morphogen. One prediction of this intercalation hypothesis is that cells will be contributed to the limb from the "polarizing tissue." To test this idea, grafts of triploid marked polarizing tissue were implanted anterior to the limb bud in 82 diploid axolotl embryos at stages 32-34 of development. A total of 27 (33%) of the limbs that resulted were symmetrical and ranged in complexity from one to seven digits. Histological analysis of a subgroup of the original symmetrical limbs revealed that mesodermally derived tissues in the anterior side of these limbs (the side which formed as a duplication in response to the influence of the graft) contained high percentages of trinucleolate cells (muscle, 12.1%; connective tissue tissue, 12.5%; and cartilage, 13.4%) when compared to similar tissues in the posterior side of the same symmetrical limbs (muscle, 1.8%; connective tissue , 0.7%; and cartilage, 0.6%). When symmetrical limbs were amputated, 73% regenerated symmetrical limbs. When these regenerated limbs were again amputated, 63% formed symmetrical secondary regenerates. Histological analysis of the first generation of regenerated limbs revealed that the pattern of distribution of trinucleolate cells in each regenerate was similar to the pattern seen in the original symmetrical limb. These results indicate that there is considerable cellular contribution to the anterior side of the symmetrical forelimb from the mesoderm of grafted "polarizing tissue." This result supports the idea that short-range cellular interaction are sufficient for formation of symmetrical forelimbs in salamander embryos.  相似文献   

17.
The primary aim of these experiments was to follow the cells descended from limb skin through the process of limb regeneration to determine what range of differentiations these cells may assume. Triploid hindlimb or forelimb skin was grafted to the denuded thighs of diploid host axolotls that had previously received 3000 R of X irradiation across both hindlimbs and the intervening pelvic area. The host limbs were then amputated through their grafts and permitted to regenerate. Cartilage, perichondrium, joint connective tissue, general connective tissue, dermis, and epidermis were present in all the regenerated limbs, but only 10% of the regenerates contained muscle. Tabulation of nucleolar numbers showed that the majority of cells in each regenerated tissue originated from the grafted skin. A strong correlation was demonstrated between the forelimb or hindlimb origin of the skin grafts and the number of digits regenerated.  相似文献   

18.
The developing neural tubes and associated neural crest cells were removed from stage 30 Ambystoma maculatum embryos to obtain larvae with aneurogenic forelimbs. Forelimbs were allowed to develop to late 3 digit or early 4 digit stages. Limbs amputated through the mid radius-ulna regenerated typically in the aneurogenic condition. Experiments were designed to test whether grafts of aneurogenic limb tissues would rescue denervated host limb stumps into a regeneration response. In Experiment 1, aneurogenic limbs were removed at the body wall and grafted under the dorsal skin of the distal end of amputated forelimbs of control, normally innervated limbs of locally collected Ambystoma maculatum or axolotl (Ambystoma mexicanum) larvae. In Experiment 1, at the time of grafting or 1, 2, 3, 4, 5, 7, or 8 days after grafting, aneurogenic limbs were amputated level with the original host stump. At 7 and 8 days, this amputation included removing the host blastema adjacent to the graft. The host limb was denervated either one day after grafting or on the day of graft amputation. These chimeric limbs only infrequently exhibited delayed blastema formation. Thus, not only did the graft not rescue the host, denervated limb, but the aneurogenic limb tissues themselves could not mount a regeneration response. In Experiment 2, the grafted aneurogenic limb was amputated through its mid-stylopodium at 3, 4, 5, 7, or 8 days after grafting. By 7 and 8 days after grafting, the host limb stump exhibited blastema formation even with the graft extending out from under the dorsal skin. The host limb was denervated at the time of graft amputation. When graft limbs of Experiment 2 were amputated and host limbs were denervated on days 3, 4, or 5, host regeneration did not progress and graft regeneration did not occur. But, when graft limbs were amputated on days 7 or 8 with concomitant denervation of the host limb, regeneration of the host continued and graft regeneration occurred. Thus, regeneration of the graft was correlated with acquisition of nerve-independence by the host limb blastema. In Experiment 3, aneurogenic limbs were grafted with minimal injury to the dorsal skin of neurogenic hosts. When neurogenic host limbs were denervated and the aneurogenic limbs were amputated through the radius/ulna, regeneration of the aneurogenic limb occurred if the neurogenic limb host was not amputated, but did not occur if the neurogenic limb host was amputated. Results of Experiment 3 indicate that the inhibition of aneurogenic graft limb regeneration on a denervated host limb is correlated with substantial injury to the host limb. In Experiment 4, aneurogenic forelimbs were amputated through the mid-radius ulna and pieces of either peripheral nerve, muscle, blood vessel, or cartilage were grafted into the distal limb stump or under the body skin immediately adjacent to the limb at the body wall. In most cases, peripheral nerve inhibited regeneration, blood vessel tissue sometimes inhibited, but other tissues had no effect on regeneration. Taken together, the results suggest: (1) Aneurogenic limb tissues do not produce the neurotrophic factor and do not need it for regeneration, and (2) there is a regeneration-inhibiting factor produced by the nerve-dependent limb stump/blastema after denervation that prevents regeneration of aneurogenic limbs.  相似文献   

19.
Peripheral nerve interactions and regenerative phenomena were studied in newt forelimbs fused end to end. After simple fusion, one or two spikelike structures regenerated at the plane of fusion in 88% of the cases. When one of the limbs was denervated at the time of fusion, no regeneration occurred from the plane of fusion. If the limbs were fused and one was amputated at the shoulder more than 10 days after fusion, regeneration from the amputation surface did not occur. When the limbs were reamputated 30 days later, regeneration of left limbs from the proximodistally reversed right limb stumps followed. If one of the limbs was denervated at the time of fusion, and amputation was subsequently carried out through the formerly denervated limb, regeneration always took place after the first amputation. On the basis of these results it is postulated that when regenerating nerves of opposite proximodistal polarity meet head-on, the majority of fibers, at least, do not grow into territories occupied by the other nerve. These results have also demonstrated that full limb regeneration can occur at a greater distance from the midline than the end of a normal limb. These experiments also provide a technique for artificially elongating peripheral nerves.  相似文献   

20.
The effects of the vital dye trypan blue (TpB) on the regeneration of amputated newt forelimbs were examined. Administration of the dye (10 mug/g body weight) via IP injection during the early wound healing and dedifferentiation phases of regeneration inhibited the normal regenerative response. The accumulation phases of regeneration are similarly halted but only by greater concentrations of TpB (50 mug/g body weight) while redifferentiation and morphogenesis are only affected by still greater concentrations of the dye (100 mug/g body weight). In addition to abolishing the regenerative response, low levels of TpB were also capable of inducing skeletal abnormalities in the regenerates as might be expected from previous reports on the teratogenicity of the dye. The in vitro action of newt hyaluronidase (as well as purified testicular hyaluronidase) on hyaluronate was diminished by TpB, with virtually complete inhibition observed at initial reaction mixture concentrations of 100 mug/ml. The results of this study suggest that TpB acts to disrupt the normal regenerative response by preventing dedifferentiation and remodeling, perhaps by inhibition of various necessary lytic enzyme functions or by interference with normal intercellular communications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号