首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims Changes in soil microbial communities after occupation by invasive alien plants can represent legacy effects of invasion that may limit recolonization and establishment of native plant species in soils previously occupied by the invader. In this study, for three sites in southern Germany, we investigated whether invasion by giant goldenrod (Solidago gigantea) leads to changes in soil biota that result in reduced growth of native plants compared with neighbouring uninvaded soils.Methods We grew four native plant species as a community and treated those plants with soil solutions from invaded or uninvaded soils that were sterilized, or live, with live solutions containing different fractions of the soil biota using a decreasing sieve mesh-size approach. We measured aboveground biomass of the plants in the communities after a 10-week growth period.Main Findings Across all three sites and regardless of invasion, communities treated with <20 μm soil biota or sterilized soil solutions had significantly greater biomass than communities treated with the complete soil biota solution. This indicates that soil biota>20 μm are more pathogenic to the native plants than smaller organisms in these soils. Across all three sites, there was only a non-significant tendency for the native community biomass to differ among soil solution types, depending on whether or not the soil was invaded. Only one site showed significant differences in community biomass among soil solution types, depending on whether or not the soil was invaded; community biomass was significantly lower when treated with the complete soil biota solution than with soil biota <20 μm or sterilized soil solutions, but only for the invaded soil. Our findings suggest that efforts to restore native communities on soils previously invaded by Solidago gigantea are unlikely to be hindered by changes in soil microbial community composition as a result of previous invasion.  相似文献   

2.
Invasive plants apply new selection pressures on neighbor plant species by different means including allelopathy. Recent evidence shows allelopathy functions as remarkably influential mediator for invaders to be successful in their invaded range. However, few studies have determined whether native and non‐native species co‐occurring with invaders have evolved tolerance to allelopathy. In this study, we conducted germination and growth experiments to evaluate whether co‐occurring native Juncus pallidus and non‐native Lolium rigidum species may evolve tolerance to the allelochemicals induced by Cyanara cardunculus in Australian agricultural fields. The test species were germinated and grown in pots filled with collected invaded and uninvaded rhizosphere soil of C. cardunculus with and without activated carbon (AC). Additionally, a separate experiment was done to differentiate the direct effects of AC on the test species. The soil properties showed invaded rhizosphere soils had higher total phenolic and lower pH compared with uninvaded soils. We found significant reduction of germination percentage and seedling growth in terms of above‐ and belowground biomass, and maximum plant height and root length of native in the invaded rhizosphere soil of C. cardunculus, but little effect on non‐native grass species. Even soil manipulated with AC showed no significant differences in the measured parameters of non‐native except aboveground biomass. Taken together, the results indicate allelochemicals induced by C. cardunculus exert more suppressive effects on native than non‐native linking the coevolved tolerance of those.  相似文献   

3.
David A. Holway 《Oecologia》1998,116(1-2):252-258
Although the Argentine ant (Linepithema humile) is a widespread invasive species that displaces native ants throughout its introduced range, the effects of these invasions on arthropods other than ants remain poorly known. This study documents the consequences of Argentine ant invasions on ants and other ground-dwelling arthropods in northern California riparian woodlands. Baits and unbaited pitfall traps were used to sample different components of the arthropod communities at five pairs of uninvaded and invaded sites. Sites occupied by Argentine ants supported almost no native epigeic ants except for the winter-active Prenolepis imparis. Sites with Argentine ants averaged four to ten times more ant workers than did sites with native ants, but ant worker biomass did not differ between uninvaded and invaded sites. Argentine ants recruited to baits in invaded areas, on average, in less than half the time of native ants in uninvaded areas. Despite the loss of epigeic native ants, higher Argentine ant worker abundance, and faster recruitment by Argentine ants at invaded sites, pitfall trap samples from uninvaded and invaded areas contained similar abundances and diversities of non-ant arthropods. These findings suggest that Argentine ants and the native ants they displace interact with the ground-dwelling arthropods of these habitats in a similar manner. Received: 24 February 1997 / Accepted: 9 November 1997  相似文献   

4.
Abstract Exotic grasses are becoming increasingly abundant in Neotropical savannas, with Melinis minutiflora Beauv. being particularly invasive. To better understand the consequences for the native flora, we performed a field study to test the effect of this species on the establishment, survival and growth of seedlings of seven tree species native to the savannas and forests of the Cerrado region of Brazil. Seeds of the tree species were sown in 40 study plots, of which 20 were sites dominated by M. minutiflora, and 20 were dominated by native grasses. The exotic grass had no discernable effect on initial seedling emergence, as defined by the number of seedlings present at the end of the first growing season. Subsequent seedling survival in plots dominated by M. minutiflora was less than half that of plots dominated by native species. Consequently, at the end of the third growing season, invaded plots had only 44% as many seedlings as plots with native grasses. Above‐ground grass biomass of invaded plots was more than twice that of uninvaded plots, while seedling survival was negatively correlated with grass biomass, suggesting that competition for light may explain the low seedling survival where M. minutiflora is dominant. Soils of invaded plots had higher mean Ca, Mg and Zn, but these variables did not account for the higher grass biomass or the lower seedling survival in invaded plots. The results indicate that this exotic grass is having substantial effects on the dynamics of the tree community, with likely consequences for ecosystem structure and function.  相似文献   

5.
Invasive plant species can modify soils in a way that benefits their fitness more than the fitness of native species. However, it is unclear how competition among plant species alters the strength and direction of plant–soil feedbacks. We tested how community context altered plant–soil feedback between the non-native invasive forb Lespedeza cuneata and nine co-occurring native prairie species. In a series of greenhouse experiments, we grew plants individually and in communities with soils that differed in soil origin (invaded or uninvaded by L. cuneata) and in soils that were live vs. sterilized. In the absence of competition, L. cuneata produced over 60% more biomass in invaded than uninvaded soils, while native species performance was unaffected. The absence of a soil origin effect in sterile soil suggests that the positive plant–soil feedback was caused by differences in the soil biota. However, in the presence of competition, the positive effect of soil origin on L. cuneata growth disappeared. These results suggest that L. cuneata may benefit from positive plant–soil feedback when establishing populations in disturbed landscapes with few interspecific competitors, but does not support the hypothesis that plant–soil feedbacks influence competitive outcomes between L. cuneata and native plant species. These results highlight the importance of considering whether competition influences the outcome of interactions between plants and soils.  相似文献   

6.
Alien invasive plants are capable of modifying ecosystem function. However, it is difficult to make generalisations because impacts often appear to be species- and site-specific. In this study, we examined the impacts of seven highly invasive plant species in NW Europe (Fallopia japonica, Heracleum mantegazzianum, Impatiens glandulifera, Prunus serotina, Rosa rugosa, Senecio inaequidens, Solidago gigantea) on nutrient pools in the topsoil and the standing biomass. We tested if the impacts follow predictable patterns, across species and sites or, alternatively, if they are entirely idiosyncratic. To that end, we compared invaded and adjacent uninvaded plots in a total of 36 sites with widely divergent soil chemistry and vegetation composition. For all species, invaded plots had increased aboveground biomass and nutrient stocks in standing biomass compared to uninvaded vegetation. This suggests that enhanced nutrient uptake may be a key trait of highly invasive plant species. The magnitude and direction of the impact on topsoil chemical properties were strongly site-specific. A striking finding is that the direction of change in soil properties followed a predictable pattern. Thus, strong positive impacts (higher topsoil nutrient concentrations in invaded plots compared to uninvaded ones) were most often found in sites with initially low nutrient concentrations in the topsoil, while negative impacts were generally found under the opposite conditions. This pattern was significant for potassium, magnesium, phosphorus, manganese and nitrogen. The particular site-specific pattern in the impacts that we observed provides the first evidence that alien invasive species may contribute to a homogenisation of soil conditions in invaded landscapes.  相似文献   

7.
Rodgers VL  Wolfe BE  Werden LK  Finzi AC 《Oecologia》2008,157(3):459-471
The invasion of non-native plants can alter the diversity and activity of soil microorganisms and nutrient cycling within forests. We used field studies to analyze the impact of a successful invasive groundcover, Alliaria petiolata, on fungal diversity, soil nutrient availability, and pH in five northeastern US forests. We also used laboratory and greenhouse experiments to test three mechanisms by which A. petiolata may alter soil processes: (1) the release of volatile, cyanogenic glucosides from plant tissue; (2) the exudation of plant secondary compounds from roots; and (3) the decomposition of litter. Fungal community composition was significantly different between invaded and uninvaded soils at one site. Compared to uninvaded plots, plots invaded by A. petiolata were consistently and significantly higher in N, P, Ca and Mg availability, and soil pH. In the laboratory, the release of volatile compounds from the leaves of A. petiolata did not significantly alter soil N availability. Similarly, in the greenhouse, the colonization of native soils by A. petiolata roots did not alter soil nutrient cycling, implying that the exudation of secondary compounds has little effect on soil processes. In a leaf litter decomposition experiment, however, green rosette leaves of A. petiolata significantly increased the rate of decomposition of native tree species. The accelerated decomposition of leaf litter from native trees in the presence of A. petiolata rosette leaves shows that the death of these high-nutrient-content leaves stimulates decomposition to a greater extent than any negative effect that secondary compounds may have on the activity of the microbes decomposing the native litter. The results presented here, integrated with recent related studies, suggest that this invasive plant may change soil nutrient availability in such a way as to create a positive feedback between site occupancy and continued proliferation.  相似文献   

8.
Invasive species may undergo rapid change as they invade. Native species persisting in invaded areas may also experience rapid change over this short timescale relative to native populations in uninvaded areas. We investigated the response of the native Achillea millefolium to soil from Holcus lanatus‐invaded and uninvaded areas, and we sought to determine whether differential responses between A. millefolium from invaded (invader experienced) and uninvaded (invader naïve) areas were mediated by soil community changes. Plants grown from seed from experienced and naïve areas responded differently to invaded and uninvaded soil with respect to germination time, biomass, and height. Overall, experienced plants grew faster and taller than their naïve counterparts. Naïve native plants showed negative feedbacks with their home soil and positive feedbacks with invaded soil; experienced plants were less responsive to soil differences. Our results suggest that native plants naïve to invasion may be more sensitive to soil communities than experienced plants, consistent with recent studies. While differences between naïve and experienced plants are transgenerational, our design cannot differentiate between differences that are genetically based, plastic, or both. Regardless, our results highlight the importance of seed source and population history in restoration, emphasizing the restoration potential of experienced seed sources.  相似文献   

9.
Sediments from Cheboygan Marsh, a coastal freshwater wetland on Lake Huron that has been invaded by an emergent exotic plant, Typhaxglauca, were examined to assess the effects of invasion on wetland nutrient levels and sediment microbial communities. Comparison of invaded and uninvaded zones of the marsh indicated that the invaded zone showed significantly lower plant diversity, as well as significantly higher aboveground plant biomass and soil organic matter. The sediments in the invaded zone also showed dramatically higher concentrations of soluble nutrients, including greater than 10-fold higher soluble ammonium, nitrate, and phosphate, which suggests that Typhaxglauca invasion may be impacting the wetland's ability to remove nutrients. Terminal restriction fragment length polymorphism analyses revealed significant differences in the composition of total bacterial communities (based on 16S-rRNA genes) and denitrifier communities (based on nirS genes) between invaded and uninvaded zones. This shift in denitrifiers in the sediments may be ecologically significant due to the critical role that denitrifying bacteria play in removal of nitrogen by wetlands.  相似文献   

10.
The Argentine ant, Linepithema humile (Mayr), is an invasive species that has been associated with various negative impacts in native communities around the world. These impacts, as for other invasive ants, are principally towards native ant species, and impacts on below-ground processes such as decomposition remain largely unexplored. We investigated the relationship between Argentine ants and invertebrate fauna, litter decomposition and soil microbial activity between paired invaded and uninvaded sites at two locations in Auckland, New Zealand, where there has been no research to date on their impacts. We examined the diversity and composition of invertebrate and microorganisms communities, and differences in soil and litter components. The composition of invertebrates (Order-level, ant and beetle species) was different between invaded and uninvaded sites, with fewer ants, isopods, amphipods, and fungus-feeding beetles at the invaded sites, whereas Collembola were more abundant at the invaded sites. There were significant differences in soil chemistry, including higher carbon and nitrogen microbial biomass at uninvaded sites. Several litter components were significantly different for Macropiper excelsum. The fibre content of litter was higher, and key nutrients (e.g. nitrogen) were lower, at invaded sites, indicating less breakdown of litter at invaded sites. A greater knowledge of the history of invasion at a site would clarify variation in the impacts of Argentine ants, but their persistence in the ground litter layer may have long-term implications for soil and plant health in native ecosystems.  相似文献   

11.
Both Impatiens glandulifera and Fallopia japonica are highly invasive plant species that have detrimental impacts on native biodiversity in areas where they invade and form dense monocultures. Both species are weakly dependent on arbuscular mycorrhizal fungi (AMF) for their growth and, therefore, under monotypic stands, the AMF network can become depauperate. We evaluated the impact of I. glandulifera and F. japonica on the performance (expressed as shoot biomass) of three UK native species (Plantago lanceolata, Lotus corniculatus and Trifolium pratense) grown in soil collected from under stands of both invasive plants and compared to plants grown in soil from under stands of the corresponding native vegetation. All native species had a higher percentage colonisation of AMF when grown in uninvaded soil compared to the corresponding invaded soil. P. lanceolata and L. corniculatus had a higher biomass when grown in uninvaded soil compared to corresponding invaded soil indicating an indirect impact from the non-native species. However, for T. pratense there was no difference in biomass between soil types related to I. glandulifera, suggesting that the species is more reliant on rhizobial bacteria. We conclude that simply managing invasive populations of non-native species that are weakly, or non-dependent, on AMF is inadequate for habitat restoration as native plant colonisation and establishment may be hindered by the depleted levels of AMF in the soil below invaded monocultures. We suggest that the reintroduction of native plants to promote AMF proliferation should be incorporated into future management plans for habitats degraded by non-native plant species.  相似文献   

12.
BACKGROUND AND AIMS: Invasion by alien plants may be partially related to disturbance-related increases in nutrient availability and decreases of competition with native species, and to superior competitive ability of the invader. Oxalis pes-caprae is an invasive winter geophyte in the Mediterranean Islands that reproduces vegetatively via bulbs. An investigation was made into the relative responses of O. pes-caprae and the native annual grass Lolium rigidum to nutrient availability and to competition with each other in order to understand patterns of invasion in the field. Because Oxalis accumulates oxalic acid in its leaves, which could ameliorate soil phosphorous availability, field observations were made to determine whether the presence of Oxalis alters soil P availability. METHODS: A full-factorial glasshouse experiment was conducted with nutrient availability (high and low) and competition (Lolium alone, Oxalis alone, and Lolium and Oxalis together). Plant performance was assessed by determining (1) above- and below-ground biomass at the time of Oxalis maximum biomass and (2) reproductive output of Oxalis and Lolium at the end of their respective growth cycles. Measurements were also taken for leaf N and P content. Soil samples were taken in the field from paired Oxalis-invaded and non-invaded plots located in Menorca (Balearic Islands) and available P was determined. KEY RESULTS: High nutrient availability increased Oxalis and Lolium vegetative biomass and reproductive output to a similar degree. Competition with Lolium had a much stronger negative effect on Oxalis bulb production than reduced nutrients. Lolium was a superior competitor than Oxalis; the latter did not affect Lolium maximum biomass and spike production. Significantly greater soil-P availability in Oxalis-invaded field soils relative to paired non-invaded soils suggest that Oxalis influences soil P cycling. CONCLUSIONS: Oxalis is a poor competitor. This is consistent with the preferential distribution of Oxalis in disturbed areas such as ruderal habitats, and might explain its low influence on the cover of native species in invaded sites. The results also suggest that certain disturbances (e.g. autumn ploughing) may greatly enhance Oxalis invasion.  相似文献   

13.
The objectives of this study were to determine whether the invasive plant Amaranthus viridis influenced soil microbial and chemical properties and to assess the consequences of these modifications on native plant growth. The experiment was conducted in Senegal at two sites: one invaded by A. viridis and the other covered by other plant species. Soil nutrient contents as well as microbial community density, diversity and functions were measured. Additionally, five sahelian Acacia species were grown in (1) soil disinfected or not collected from both sites, (2) uninvaded soil exposed to an A. viridis plant aqueous extract and (3) soil collected from invaded and uninvaded sites and inoculated or not with the arbuscular mycorrhizal (AM) fungus Glomus intraradices . The results showed that the invasion of A. viridis increased soil nutrient availability, bacterial abundance and microbial activities. In contrast, AM fungi and rhizobial development and the growth of Acacia species were severely reduced in A. viridis -invaded soil. Amaranthus viridis aqueous extract also exhibited an inhibitory effect on rhizobial growth, indicating an antibacterial activity of this plant extract. However, the inoculation of G. intraradices was highly beneficial to the growth and nodulation of Acacia species. These results highlight the role of AM symbiosis in the processes involved in plant coexistence and in ecosystem management programs that target preservation of native plant diversity.  相似文献   

14.
Improving current understanding of the factors that control soil carbon (C) dynamics in forest ecosystems remains an important topic of research as it plays an integral role in the fertility of forest soils and the global C cycle. Invasive earthworms have the potential to alter soil C dynamics, though mechanisms and effects remain poorly understood. To investigate potential effects of invasive earthworms on forest C, the forest floor, mineral soil, fine root biomass, litterfall and microbial litter decay rates, and total soil respiration (TSR) over a full year were measured at an invaded and uninvaded deciduous forest site in southern Ontario. The uninvaded site was approximately 300 m from the invaded site and a distinct invasion front between sites was present. Along the invasion front, the biomass of the forest floor was negatively correlated with earthworm abundance and biomass. There was no significant difference between litterfall, microbial litter decay, and TSR between the invaded and uninvaded sites, but fine root biomass was approximately 30% lower at the invaded site. There was no significant difference in total soil C pools (0–30 cm) between the invaded and uninvaded sites. Despite profound impacts on forest floor soil C pools, earthworm invasion does not significantly increase TSR, most likely because increased heterotrophic respiration associated with earthworms is largely offset by a decrease in autotrophic respiration caused by lower fine root biomass.  相似文献   

15.
Above-ground invertebrates may represent a high proportion of animal biomass, but few data are available on their fate after death. In Mediterranean ant communities, they are frequently scavenged by ants. Here, we assessed the consequences of Argentine ant invasion on the removal of arthropod corpses in Doñana National Park (SW Spain). In three natural habitats that differed in their degree of vegetation cover (i.e. protection for ants against high temperatures), we experimentally provided dead Drosophila, and observed their disappearance over a 60-min period at different times of day and year. The habitats used were isolated cork oak trees, pine tree forest and dry scrubland; we compared invaded with uninvaded plots in each. Oak trees were the most invaded habitat, while scrubland was the least and the only one where the Argentine ant coexisted with native ant species. In accordance with this degree of invasion, the Argentine ant removed the highest percentage of dead flies in oak trees and the lowest in scrubland. Its performance as scavenger was higher than uninvaded ant communities, but it was reduced at high temperatures, when native species were highly efficient. The saturated distribution of the Argentine ant colony seems to be the key to its efficiency. We discuss how the occurrence and scavenger efficiency of the Argentine ant could affect the nutrient cycling and the progression of its invasion.  相似文献   

16.
Few studies have examined the invasion of understory species into closed-canopy forests and, despite inter-specific differences in litter quality and quantity between understory and dominant canopy trees, the influence of understory invasions on soil nitrogen (N) cycling remains unknown. This paper examines litter quality and decomposition of kahili ginger (Hedychium gardnerianum), an invasive understory herb, to determine the influence of this species on N cycling in a Hawaiian montane rainforest. To examine the potential feedback between increased soil N availability and litter decomposition, litter from the invasive ginger, a native tree, and native tree fern was collected from unfertilized and fertilized plots and decomposed in a reciprocal transplant design. Hedychium litter decomposed faster than litter from the two native species. Across species, decomposition rates were negatively correlated with litter lignin content. Despite rapid decomposition rates of Hedychium litter, soil nitrogen availability and rates of net mineralization in the soil were similar in invaded and uninvaded plots. Nitrogen cycling at this site may be more strongly influenced by native species, which contribute the most to overall stand biomass. A negative effect of fertilization on the decomposition of Hedychium litter suggests that a negative feedback between litter quality and soil N availability may exist over longer timescales.  相似文献   

17.
Questions: How does invasion affect old‐field seed bank species richness, composition and density? How consistent are these effects across sites? Does the soil seed bank match vegetation structure in old‐fields? Location: Menorca, Balearic Islands, Spain, western Mediterranean basin. Methods: We monitored seed germination in soils from old‐fields that were both uninvaded and invaded (legacy effect) by the annual geophyte Oxalis pes‐caprae. We also added O. pes‐caprae bulbs to uninvaded soils to test O. pes‐caprae interference with seedling emergence (competitive effect). We compared species composition in the seed bank with that of the vegetation. Results: Species richness in the seed bank and in the vegetation was not significantly different between invaded and uninvaded areas. Uninvaded areas did not have larger seed banks than invaded areas. More seedlings, especially of geophytes, emerged when O. pes‐caprae bulbs were added to the soil. Species similarity between invaded and uninvaded areas was higher in the seed bank (74%) than in the vegetation (49%). Differences in species composition were as important as differences among sites. The degree of species similarity between the seed bank and the vegetation was very low (17%). Conclusions: Despite invasion by O. pes‐caprae not affecting species richness, the variation in the seed bank species composition in invaded and uninvaded areas, and the differences between the seed bank and the mature vegetation, highlights that even if the invader could be eradicated the vegetation could not be restored back to the exact composition as found in uninvaded areas.  相似文献   

18.
Lee MR  Flory SL  Phillips RP 《Oecologia》2012,170(2):457-465
Understanding the mechanisms by which invasive plants maintain dominance is essential to achieving long-term restoration goals. While many reports have suggested invasive plants alter resource availability, experimental tests of feedbacks between invasive plants and soil resources are lacking. We used field observations and experimental manipulations to test if the invasive grass Microstegium vimineum both causes and benefits from altered soil nitrogen (N) cycling. To quantify M. vimineum effects on N dynamics, we compared inorganic N pools and nitrification rates in 20 naturally invaded and uninvaded plots across a range of mixed hardwood forests, and in experimentally invaded and uninvaded common garden plots. Potential nitrification rates were 142 and 63?% greater in invaded than uninvaded plots in forest and common garden soils, respectively. As a result, soil nitrate was the dominant form of inorganic N during peak M. vimineum productivity in both studies. To determine the response of M. vimineum to altered nitrogen availability, we manipulated the dominant N form (nitrate or ammonium) in greenhouse pots containing M. vimineum alone, M. vimineum with native species, and native species alone. M. vimineum productivity was highest in monocultures receiving nitrate; in contrast, uninvaded native communities showed no response to N form. Notably, the positive response of M. vimineum to nitrate was not apparent when grown in competition with natives, suggesting an invader density threshold is required before positive feedbacks occur. Collectively, our results demonstrate that persistence of invasive plants can be promoted by positive feedbacks with soil resources but that the magnitude of feedbacks may depend on interspecific interactions.  相似文献   

19.
Aims In recent years, there has been an increasing interest in the impact of invasive alien plant species on the soil seed bank. Soil seed banks play an important role in determining the composition and dynamics of the vegetation through time. Therefore, an ability to form a persistent seed bank and/or a capacity to alter the structure of the seed bank of invaded communities could be important factors in determining the success of many alien plant species. In this study, we report on a detailed assessment of the characteristics of the seed bank community associated with the herbaceous plant invader, Gunnera tinctoria, a newly emerging and potentially globally significant invasive plant species. This species, native to South America, is invasive in a range of wet habitats in Europe, Australasia and the USA.Methods A comprehensive assessment of the seed bank of invaded and comparable uninvaded areas was made at two points in time (May and October), at three sites in western Ireland. The seedling emergence approach was used to assess the structure (diversity, dominance and abundance) of the soil seed bank. Differences between invaded and uninvaded seed bank communities were investigated at the spatial scales of site, plot and depth.Important findings Gunnera tinctoria formed a large persistent seed bank at the study sites. Approximately 30-000 seedlings per square metre emerged from soils collected from invaded areas, of which 30% were found in deep soil layers. Seedlings of this invader represented 53–86% of the total number of seedlings associated with invaded areas. Both the transient and the more persistent component of the seed bank of invaded communities were significantly less diverse and abundant than those of uninvaded areas, and were characterized by higher dominance, even when seedlings of the invader were not included in the analysis. The seed bank of invaded areas was largely composed of seeds of agricultural weeds in addition to those of the invader. These results suggest that G. tinctoria has the capacity to profoundly alter the seed bank of invaded communities. These results have direct relevance for the development of control and management strategies, for this and other comparable invasive species, which should account for both quantitative and qualitative alterations in the seed bank community. Our study also suggests that control measures that result in disturbance of areas colonized by G. tinctoria could promote the germination of undesirable weeds.  相似文献   

20.
Reed canary grass (Phalaris arundinacea, L.) invasion of wetlands is an ecological issue that has received attention, but its impact on soil microbial diversity is not well documented. The present study assessed the size (substrate-induced respiration), catabolic diversity (CLPP, community level physiological profiles) and composition (selective inhibition) of the soil microbial community in invaded (>95% P. arundinacea cover) and in non-invaded areas of a wetland occupied by native species grown either as a mixed assemblage (22 species) or as quasi-monotypic stands of Scirpus cyperinus (74% cover). The study also tested the hypothesis that decomposition of lignin- and phenolics-rich plant tissues would be fastest in soils exhibiting high catabolic diversity. Results showed that soil respiration, microbial biomass and diversity were significantly higher (P?<?0.03; 1.5 to 3 fold) in P. arundinacea-invaded soils than in soils supporting native plant species. Fungal to bacterial ratios were also higher in invaded (0.6) than in non-invaded (0.4) plots. Further, canonical discriminant analysis of CLPP data showed distinct communities of soil decomposers associated with each plant community. However, these differences in microbial attributes had no effect on decomposition of plant biomass which was primarily controlled by its chemical composition. While P. arundinacea invasion has substantially reduced plant diversity, this study found no parallel decline in the size and diversity of the soil microbial community in the invaded areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号