共查询到20条相似文献,搜索用时 15 毫秒
1.
Jung Jang Hyun Tae Pih Kyeong Gene Kang Shine Hwa Lim Jeong Bo Jin Jing Lan Piao Hai Hwang Inhwan 《Plant molecular biology》1998,37(5):839-847
Plant responses to high salt stress have been studied for several decades. However, the molecular mechanisms underlying these responses still elude us. In order to understand better the molecular mechanism related to NaCl stress in plants, we initiated the cloning of a large number of NaCl-induced genes in Arabidopsis. Here, we report the cloning of a cDNA encoding a novel Ca2+-binding protein, named AtCP1, which shares sequence similarities with calmodulins. AtCP1 exhibits, in particular, a high degree of amino acid sequence homology to the Ca2+-binding loops of the EF hands of calmodulin. However, unlike calmodulin, AtCP1 appears to have only three Ca2+-binding loops. We examined Ca2+ binding of the protein by a Ca2+-dependent electrophoretic mobility shift assay. A recombinant AtCP1 protein that was expressed in Escherichia coli did show a Ca2+-dependent electrophoretic mobility shift. To gain insight into the expression of the AtCP1 gene, northern blot analysis was carried out. The AtCP1 gene had a tissue-specific expression pattern: high levels of expression in flower and root tissues and nearly undetectable levels in leaves and siliques. Also, the expression of the AtCP1 gene was induced by NaCl treatment but not by ABA treatment. Finally, subcellular localization experiments using an AtCP1:smGFP fusion gene in soybean suspension culture cells and tobacco leaf protoplasts indicate that AtCP1 is most likely a cytosolic protein. 相似文献
2.
Ca2+ release from sarcoplasmic reticulum membranes, activated by alkaline pH occurs only when EGTA is present in the release medium. Addition of very low concentrations of Ca2+ to the medium inhibits Ca2+ release. The concentration of free Ca2+ required for 50% inhibition ranges from between 5 and 20 nM in different experiments and/or membrane preparations, irrespective of whether the free Ca2+ concentration is controlled by EGTA or CDTA. Other divalent cations such as Mn2+, Ba2+, Cu2+, Cd2+ and Mg2+ also exert an inhibitory effect on Ca2+ release, with higher or lower potency than that of Ca2+. The inactivation of Ca2+ release by Ca2+ is reversible. We suggest the involvement of high-affinity Ca2+-binding sites in the control of Ca2+ release. 相似文献
3.
E Picello E Damiani A Margreth 《Biochemical and biophysical research communications》1992,186(2):659-667
Histidine-rich Ca(2+)-binding protein (HRC) is a 170 kDa protein that can be identified in the isolated sarcoplasmic reticulum from rabbit skeletal muscle by its ability to bind [125I]low-density lipoprotein on blots after SDS-PAGE and that appears to be bound to the junctional membrane through calcium bridges. Molecular cDNA cloning of this protein predicts the existence of a Ca(2+)-binding domain and of a distinct heavy-metal binding domain at the cystein-rich COOH-terminus. Here we demonstrate, using radioactive ligand blot techniques, that HRC protein binds 45Ca at low affinity, as well as being able to bind 65Zn, but at different sites, that are largely inhibitable by prior reductive alkylation of the protein. In contrast to Ca(2+)-binding protein calsequestrin not having detectable 65Zn-binding sites, HRC protein bound selectively to immobilized Zn2+ on IDA-agarose affinity columns. Our results also indicate that rabbit and human 140 kDa HRC protein have common properties. 相似文献
4.
Purification of a sarcoplasmic reticulum protein that binds Ca2+ and plasma lipoproteins 总被引:2,自引:0,他引:2
S L Hofmann M S Brown E Lee R K Pathak R G Anderson J L Goldstein 《The Journal of biological chemistry》1989,264(14):8260-8270
A protein in the sarcoplasmic reticulum of rabbit skeletal and cardiac muscle was identified because of its ability to bind 125I-labeled low density lipoprotein (LDL) with high affinity after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This protein, referred to as the 165-kDa protein, is restricted to striated muscle. It was not detected in 14 other tissues, including several that contain smooth muscle, but it appears in rat L6 myoblasts when they differentiate into myocytes. Immunofluorescence and immunoelectron microscopic studies revealed that the protein is present throughout the sarcoplasmic reticulum and the terminal cisternae. It binds 45Ca2+ on nitrocellulose blots and stains metachromatically with Stains-all, a cationic dye that stains Ca2+-binding proteins. It does not appear to be a glycoprotein, and it appears slightly larger than the 160-kDa glycoprotein previously described in sarcoplasmic reticulum. The 165-kDa protein binds LDL, beta-migrating very low density lipoprotein, and a cholesterol-induced high density lipoprotein particle that contains apoprotein E as its sole apoprotein with much higher affinity than it binds high density lipoprotein. The protein is stable to boiling and to treatment with sodium dodecyl sulfate, but it becomes sensitive to these treatments when its cystine residues are reduced and alkylated. The protein was purified 1300-fold to apparent homogeneity from rabbit skeletal muscle membranes. It differs from the cell surface LDL receptor in that 1) its apparent molecular weight is not changed by reduction and alkylation; 2) it is present in Watanabe-heritable hyperlipidemic rabbits, which lack functional LDL receptors; 3) binding of lipoproteins is not inhibited by EDTA; and 4) it is located within the lumen of the sarcoplasmic reticulum where it has no access to plasma lipoproteins. It is unlikely that this protein ever binds lipoproteins in vivo; however, its lipoprotein binding activity has facilitated its purification to homogeneity and suggests that this protein has unusual structural features. The role of the 165-kDa protein in Ca2+ homeostasis in the sarcoplasmic reticulum, if any, remains to be determined. 相似文献
5.
Kim E Shin DW Hong CS Jeong D Kim DH Park WJ 《Biochemical and biophysical research communications》2003,300(1):192-196
The histidine-rich Ca(2+) binding protein (HRC) is a high capacity Ca(2+) binding protein in the sarcoplasmic reticulum (SR). Because HRC appears to interact directly with triadin, HRC may play a role in the regulation of Ca(2+) release during excitation-contraction coupling. In this study, we examined the physiological effects of HRC overexpression in rat neonatal cardiomyocytes. Both caffeine-induced and depolarization-induced Ca(2+) release from the SR were increased significantly in the HRC overexpressing cardiomyocytes. Consistently, the Ca(2+) content, normally depleted from the SR in the presence of cyclopiazonic acid (CPA), remained elevated in these cells. In contrast, the density and the ryanodine-binding kinetics of the ryanodine receptor (RyR)/Ca(2+) release channel were slightly reduced or not significantly altered in the HRC overexpressing cardiomyocytes. We suggest that HRC is involved in the regulation of releasable Ca(2+) content into the SR. 相似文献
6.
HRC (histidine-rich Ca(2+) binding protein) has been identified from skeletal and cardiac muscle and shown to bind Ca(2+) with high capacity and low affinity. While HRC resides in the lumen of the sarcoplasmic reticulum, the physiological function of HRC is largely unknown. In the present study, we have performed co-immunoprecipitation experiments and show that HRC binds directly to triadin, which is an integral membrane protein of the sarcoplasmic reticulum. Using a fusion protein binding assay, we further identified the histidine-rich acidic repeats of HRC as responsible for the binding of HRC to triadin. These motifs may represent a novel protein-protein interaction domain. The HRC binding domain of triadin was also localized by fusion protein binding assay to the lumenal region containing the KEKE motif that was previously shown to be involved in the binding of triadin to calsequestrin. Notably, the interaction of HRC and triadin is Ca(2+)-sensitive. Our data suggest that HRC may play a role in the regulation of Ca(2+) release from the sarcoplasmic reticulum by interaction with triadin. 相似文献
7.
Intralumenal sarcoplasmic reticulum Ca(2+)-binding proteins 总被引:3,自引:0,他引:3
The sarcoplasmic reticulum (SR) controls the level of intracellular Ca2+ in cardiac and skeletal muscle by storing and releasing Ca2+. A set of intralumenal SR Ca(2+)-binding proteins has been identified that may serve important roles in SR Ca2+ storage and mobilization. The most prominent of these SR proteins, calsequestrin, is discretely localized to junctional SR. Other intralumenal proteins are more widely distributed throughout the SR. All of these intralumenal SR Ca(2+)-binding proteins are acidic, stain blue with dye Stains-All, and appear to be substrates for casein kinase II. The biochemistry and cell biology of lumenal SR proteins may conform to a paradigm now emerging from the study of endoplasmic reticulum proteins. 相似文献
8.
HRC (histidine-rich Ca2+ binding protein) has been identified from skeletal and cardiac muscle and shown to bind Ca2+ with low affinity and high capacity that is reminiscent of calsequestrin. The physiological role of HRC is largely unknown. In this study, we show that HRC exists as a multimeric complex (probably larger than a pentamer) under physiological conditions. At higher Ca2+ concentrations, the complex appeared to dissociate into dimers or trimers that form a more relaxed structure. This is in striking contrast to the characteristics of calsequestrin. An earlier immuno-electron microscopic study showed that HRC resides in the lumen of the sarcoplasmic reticulum (SR), but this conclusion has been challenged by other data. By tryptic digestion and biotinylation of SR vesicles, we provide compelling evidence showing that HRC is indeed present in the lumen of the SR. 相似文献
9.
Sørensen TL Clausen JD Jensen AM Vilsen B Møller JV Andersen JP Nissen P 《The Journal of biological chemistry》2004,279(45):46355-46358
K+ plays an important role for the function of the sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA), but its binding site within the molecule has remained unidentified. We have located the binding site for a K+ ion in the P-domain by means of x-ray crystallography using crystals prepared in the presence of the K+ congener Rb+. Backbone carbonyls from the loop containing residues 711-715 together with the side chain of Glu732 define the K+/Rb+ site in the Ca2+ -ATPase conformation with bound Ca2+, ADP, and AlF4-. Functional analysis of Ca2+ -ATPase mutants with alterations to Glu732 shows that this site is indeed important for the stimulatory effect of K+ on the dephosphorylation rate. Comparison with the Ca2+ -ATPase in a dephosphorylated E2 conformation suggests that the K+ site is involved in the correct movement and positioning of the A-domain during translocation and dephosphorylation. 相似文献
10.
11.
A plasmid cDNA library prepared from a T-lymphocyte clone of murine strain B10.A origin was screened by cross-species DNA hybridisation using a partial human p68 cDNA clone, identified as containing coding sequences for previously determined amino-acid sequences. The longest p68 cDNA insert from this library and a full-length cDNA insert from a second similar library were fully sequenced. A comparison of the derived amino-acid sequence with that of human p68 revealed extensive homology (95% overall). Homology at the nucleotide level was 89% in the open reading frame and 85% and 50% in the 5' (33 nucleotides) and 3' (347 nucleotides) non-coding regions respectively. Eight segments of internal homology were observed, each containing a highly conserved consensus region of 17 amino acids correlating with that described for several membrane associated calcium-binding proteins [Geisow, M. J., Fritsche, U., Hexham, J. M. & Johnson, T. (1986) Nature (Lond.) 320, 636-638]. These results provide further evidence that p68 is a member of the same gene family as p32,p36 and lipocortin I and demonstrate an unusually high level of inter-species sequence conservation of p68 between mouse and human. 相似文献
12.
G Meissner 《Biochimica et biophysica acta》1973,298(4):906-926
13.
14.
Crystal structures have shown that the conserved TGES loop of the Ca2+-ATPase is isolated in the Ca2E1 state but becomes inserted in the catalytic site in E2 states. Here, we have examined the kinetics of the partial reaction steps of the transport cycle and the binding of the phosphoryl analogs BeF, AlF, MgF, and vanadate in mutants with alterations to the TGES residues. The mutations encompassed variation of size, polarity, and charge of the side chains. Differential effects on the Ca2E1P --> E2P, E2P --> E2, and E2 --> Ca2E1 reactions and the binding of the phosphoryl analogs were observed. In the E183D mutant, the E2P --> E2 dephosphorylation reaction proceeded at a rate as high as one-third that of the wild type, whereas it was very slow in the other Glu183 mutants, including E183Q, thus demonstrating the need for a negatively charged carboxylate group to catalyze dephosphorylation. By contrast, the Ca2E1P --> E2P transition was accomplished at a reasonable rate with glutamine in place of Glu183, but not with aspartate, indicating that the length of the Glu183 side chain, in addition to its hydrogen bonding potential, is critical for Ca2E1P --> E2P. This transition was also slowed in mutants with alteration to other TGES residues. The data provide functional evidence in support of the proposed role of Glu183 in activating the water molecule involved in the E2P --> E2 dephosphorylation and suggest a direct participation of the side chains of the TGES loop in the control and facilitation of the insertion of the loop in the catalytic site. The interactions of the TGES loop furthermore seem to facilitate its disengagement from the catalytic site during the E2 --> Ca2E1 transition. 相似文献
15.
Calumenin is a multiple EF-hand Ca2+-binding protein located in endo/sarcoplasmic reticulum of mammalian tissues. In the present study, we cloned two rabbit calumenin isoforms (rabbit calumenin-1 and -2, GenBank Accession Nos. SY225335 and AY225336, respectively) by RT-PCR. Both isoforms contain a 19 aa N-terminal signal sequence, 6 EF-hand domains, and a C-terminal ER/SR retrieval signal, HDEF. Both calumenin isoforms exist in rabbit cardiac and skeletal muscles, but calumenin-2 is the main isoform in skeletal muscle. Presence of calumenin in rabbit sarcoplasmic reticulum (SR) was identified by Western blot analysis. GST-pull down and co-immunoprecipitation experiments showed that ryanodine receptor 1 (RyR1) interacted with calumenin-2 in millimolar Ca2+ concentration range. Experiments of gradual EF-hand deletions suggest that the second EF-hand domain is essential for calumenin binding to RyR1. Adenovirus-mediated overexpression of calumenin-2 in C2C12 myotubes led to increased caffeine-induced Ca2+ release, but decreased depolarization-induced Ca2+ release. Taken together, we propose that calumenin-2 in the SR lumen can directly regulate the RyR1 activity in Ca2+-dependent manner. 相似文献
16.
Zhang M Yamazaki T Yazawa M Treves S Nishi M Murai M Shibata E Zorzato F Takeshima H 《Cell calcium》2007,42(1):83-90
We have identified a novel endoplasmic reticulum (ER)-resident protein, named "calumin", which is expressed in various tissues. This protein has a molecular mass of approximately 60 kDa and is composed of an ER-luminal domain rich in acidic residues, a single transmembrane segment, and a large cytoplasmic domain. Biochemical experiments demonstrated that the amino-terminal luminal domain is capable of binding Ca2+ with a high capacity and moderate affinity. In embryonic fibroblasts derived from calumin-knockout mice exhibiting embryonic and neonatal lethality, fluorometric Ca2+ imaging detected insufficient Ca2+ contents in intracellular stores and attenuated store-operated Ca2+ entry. Moreover, the mutant fibroblasts were highly sensitive to cell death induced by ER stress. These observations suggest that calumin plays an essential role in ER Ca2+ handling and is also implicated in signaling from the ER, which is closely associated with cell-fate decision. 相似文献
17.
Sarcoplasmic reticulum vesicles from fast skeletal muscle were partially delipidated with sodium cholate at high ionic strength and sedimented in a discontinuous sucrose gradient. Phospholipid content was reduced from 0.777 mumol/mg protein to 0.242 mumol/mg protein. As judged from gel electrophoresis and high pressure liquid gel chromatography, accessory proteins were removed during centrifugation and the Ca2+-ATPase was obtained in an almost pure form. Addition of myristoylglycerophosphocholine (1 mg/mg protein) reactivates ATPase and dinitrophenylphosphatase activity to the same degree obtained with native vesicles. Using the analytical ultracentrifuge it could be demonstrated that the reactivated Ca2+-ATPase was present exclusively in a monomeric state. These results were obtained at high and low ionic strength and up to a protein concentration of 10 mg/ml. Therefore this preparation should be very useful to investigate differences between oligomeric and monomeric Ca2+-ATPase. 相似文献
18.
Eduardo M. R. Reis Carolyn W. Slayman Sergio Verjovski-Almeida 《Bioscience reports》1996,16(2):107-113
In recent years, expression of rabbit sarcoplasmic reticulum (SR) Ca2+-ATPase in heterologous systems has been a widely used strategy to study altered enzymes generated by site-directed mutagenesis. Various eukaryotic expression systems have been tested, all of them yielding comparable amounts of recombinant protein. However, the relatively low yield of recombinant protein obtained so far suggests that novel purification techniques will be required to allow further characterization of this enzyme based on direct ligand-binding measurements. 相似文献
19.
Sarcoplasmic reticulum Ca2+-ATPase solubilized in monomeric form by nonionic detergent was reacted with CrATP in the presence of 45Ca2+. A Ca2+-occluded complex formed, which was stable during high performance liquid chromatography in the presence of excess non-radioactive Ca2+. The elution position corresponded to monomeric Ca2+-ATPase. It is concluded that a single Ca2+-ATPase polypeptide chain provides the full structural basis for Ca2+ occlusion. 相似文献
20.
Gilchrist James S.C. Palahniuk Chris Bose Ratna 《Molecular and cellular biochemistry》1997,172(1-2):159-170
In this report we describe the application of spectroscopic methods to the study of Ca2+ release by isolated native sarcoplasmic reticulum (SR) membranes from rabbit skeletal muscle. To date, dual-wavelength spectroscopy of arsenazo III and antipyrylazo III difference absorbance have been the most common spectroscopic methods for the assay of SR Ca2+ transport. The utility of these methods is the ability to manipulate intraluminal Ca2+ loading of SR vesicles. These methods have also been useful for studying the effect of both agonists and antagonists upon SR Ca2+ release and Ca2+ uptake. In this study, we have developed the application of Calcium Green-2, a long-wavelength excitable fluorescent indicator, for the study of SR Ca2+ uptake and release. With this method we demonstrate how ryanodine receptor Ca2+ channel opening and closing is regulated in a complex manner by the relative distribution of Ca2+ between extraluminal and intraluminal Ca2+ compartments. Intraluminal Ca2+ is shown to be a key regulator of Ca2+ channel opening. However, these methods also reveal that the intraluminal Ca2+ threshold for Ca2+-induced Ca2+ release varies as a function of extraluminal Ca2+ concentration. The ability to study how the relative distribution of a finite pool of Ca2+ across the SR membrane influences Ca2+ uptake and Ca2+ release may be useful for understanding how the ryanodine receptor is regulated, in vivo. 相似文献