首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurate determination of patterns of genetic variation provides a powerful inferential tool for studies of evolution and conservation. For more than 30 years, enzyme electrophoresis was the preferred method for elucidating these patterns. As a result, evolutionary geneticists have acquired considerable understanding of the relationship between patterns of allozyme variation and aspects of evolutionary process. Myriad molecular markers and statistical analyses have since emerged, enabling improved estimates of patterns of genetic diversity. With these advances, there is a need to evaluate results obtained with different markers and analytical methods. We present a comparative study of gene statistic estimates (F(ST), G(ST), F(IS), H(S), and H(T)) calculated from an intersimple sequence repeat (ISSR) and an allozyme data set derived from the same populations using both standard and Bayesian statistical approaches. Significant differences were found between estimates, owing to the effects of marker and analysis type. Most notably, F(ST) estimates for codominant data differ between Bayesian and standard approaches. Levels of statistical significance are greatly affected by methodology and, in some cases, are not associated with similar levels of biological significance. Our results suggest that caution should be used in equating or comparing results obtained using different markers and/or methods of analysis.  相似文献   

2.
Inferences about species boundaries and evolutionary history are often complicated by discordance between datasets. In recent times, considerable effort has been devoted to understanding the causes of discordance between the patterns of genetic variation and structure shown by different unlinked molecular markers. The genus Batrachoseps (Caudata, Plethodontidae), the most diverse group of salamanders in western North America, is characterized by limited morphological variation and discordance between molecular datasets, making it a challenging group for taxonomists but also a good model to test newly developed analytical methods to sort out possible sources of discordance. In this study, we present a comprehensive assessment of the evolutionary history of B. major, one of the most widespread species in the genus, based on extensive sampling and phylogenetic and coalescent analyses of data from mitochondrial and nuclear markers. We found non-monophyly of mtDNA in B. major, with two lineages (northern and southern) that are more closely related to other species in the genus than to each other, but this division was not apparent in nuclear DNA. Despite non-monophyly in gene trees, species tree analyses recovered a sister group relationship between the two lineages of B. major, and coalescent simulations suggested that there is no need to invoke gene flow to account for the discordance across gene trees. The possibility that these two lineages represent sister, cryptic taxa, is discussed in the context of Bayesian methods of species/lineage delineation. Contrary to prior expectations, B. major has experienced extensive diversification on the Baja California Peninsula, where four endemic lineages have persisted for at least 4 million years.  相似文献   

3.
Stinchcombe JR  Hoekstra HE 《Heredity》2008,100(2):158-170
A central challenge in evolutionary biology is to identify genes underlying ecologically important traits and describe the fitness consequences of naturally occurring variation at these loci. To address this goal, several novel approaches have been developed, including 'population genomics,' where a large number of molecular markers are scored in individuals from different environments with the goal of identifying markers showing unusual patterns of variation, potentially due to selection at linked sites. Such approaches are appealing because of (1) the increasing ease of generating large numbers of genetic markers, (2) the ability to scan the genome without measuring phenotypes and (3) the simplicity of sampling individuals without knowledge of their breeding history. Although such approaches are inherently applicable to non-model systems, to date these studies have been limited in their ability to uncover functionally relevant genes. By contrast, quantitative genetics has a rich history, and more recently, quantitative trait locus (QTL) mapping has had some success in identifying genes underlying ecologically relevant variation even in novel systems. QTL mapping, however, requires (1) genetic markers that specifically differentiate parental forms, (2) a focus on a particular measurable phenotype and (3) controlled breeding and maintenance of large numbers of progeny. Here we present current advances and suggest future directions that take advantage of population genomics and quantitative genetic approaches - in both model and non-model systems. Specifically, we discuss advantages and limitations of each method and argue that a combination of the two provides a powerful approach to uncovering the molecular mechanisms responsible for adaptation.  相似文献   

4.
Harvesting of wildlife populations by humans is usually targeted by sex, age or phenotypic criteria, and is therefore selective. Selective harvesting has the potential to elicit a genetic response from the target populations in several ways. First, selective harvesting may affect population demographic structure (age structure, sex ratio), which in turn may have consequences for effective population size and hence genetic diversity. Second, wildlife-harvesting regimes that use selective criteria based on phenotypic characteristics (e.g. minimum body size, horn length or antler size) have the potential to impose artificial selection on harvested populations. If there is heritable genetic variation for the target characteristic and harvesting occurs before the age of maturity, then an evolutionary response over time may ensue. Molecular ecological techniques offer ways to predict and detect genetic change in harvested populations, and therefore have great utility for effective wildlife management. Molecular markers can be used to assess the genetic structure of wildlife populations, and thereby assist in the prediction of genetic impacts by delineating evolutionarily meaningful management units. Genetic markers can be used for monitoring genetic diversity and changes in effective population size and breeding systems. Tracking evolutionary change at the phenotypic level in the wild through quantitative genetic analysis can be made possible by genetically determined pedigrees. Finally, advances in genome sequencing and bioinformatics offer the opportunity to study the molecular basis of phenotypic variation through trait mapping and candidate gene approaches. With this understanding, it could be possible to monitor the selective impacts of harvesting at a molecular level in the future. Effective wildlife management practice needs to consider more than the direct impact of harvesting on population dynamics. Programs that utilize molecular genetic tools will be better positioned to assess the long-term evolutionary impact of artificial selection on the evolutionary trajectory and viability of harvested populations.  相似文献   

5.
Differences in larval developmental mode are predicted to affect ecological and evolutionary processes ranging from gene flow and population bottlenecks to rates of population recovery from anthropogenic disturbance and capacity for local adaptation. The most powerful tests of these predictions use comparisons among species to ask how phylogeographic patterns are correlated with the evolution and loss of prolonged planktonic larval development. An important and largely untested assumption of these studies is that interspecific differences in population genetic structure are mainly caused by differences in dispersal and gene flow (rather than by differences in divergence times among populations or changes in effective population sizes), and that species with similar patterns of spatial genetic variation have similar underlying temporal demographic histories. Teasing apart these temporal and spatial patterns is important for understanding the causes and consequences of evolutionary changes in larval developmental mode. New analytical methods that use the coalescent history of allelic diversity can reveal these temporal patterns, test the strength of traditional population-genetic explanations for variation in spatial structure based on differences in dispersal, and identify strongly supported alternative explanations for spatial structure based on demographic history rather than on gene flow alone. We briefly review some of these recent analytical developments, and show their potential for refining ideas about the correspondence between the evolution of larval developmental mode, population demographic history, and spatial genetic variation.  相似文献   

6.
Quantitative genetics provides a powerful framework for studying phenotypic evolution and the evolution of adaptive genetic variation. Central to the approach is G, the matrix of additive genetic variances and covariances. G summarizes the genetic basis of the traits and can be used to predict the phenotypic response to multivariate selection or to drift. Recent analytical and computational advances have improved both the power and the accessibility of the necessary multivariate statistics. It is now possible to study the relationships between G and other evolutionary parameters, such as those describing the mutational input, the shape and orientation of the adaptive landscape, and the phenotypic divergence among populations. At the same time, we are moving towards a greater understanding of how the genetic variation summarized by G evolves. Computer simulations of the evolution of G, innovations in matrix comparison methods, and rapid development of powerful molecular genetic tools have all opened the way for dissecting the interaction between allelic variation and evolutionary process. Here I discuss some current uses of G, problems with the application of these approaches, and identify avenues for future research.  相似文献   

7.
Divergent natural selection is considered an important force in plant evolution leading to phenotypic differentiation between populations exploiting different environments. Extending an earlier greenhouse study of population differentiation in the selfing annual plant Senecio vulgaris, we estimated the degree of population divergence in several quantitative traits related to growth and life history and compared these estimates with those based on presumably neutral molecular markers (amplified fragment length polymorphisms; AFLPs). This approach allowed us to disentangle the effects of divergent selection from that of other evolutionary forces (e.g. genetic drift). Five populations were examined from each of two habitat types (ruderal and agricultural habitats). We found a high proportion of total genetic variance to be among populations, both for AFLP markers (phiST = 0.49) and for quantitative traits (range of QST: 0.26-0.77). There was a strong correlation between molecular and quantitative genetic differentiation between pairs of populations (Mantel's r = 0.59). However, estimates of population differentiation in several quantitative traits exceeded the neutral expectation (estimated from AFLP data), suggesting that divergent selection contributed to phenotypic differentiation, especially between populations from ruderal and agricultural habitats. Estimates of within-population variation in AFLP markers and quantitative genetic were poorly correlated, indicating that molecular marker data may be of limited value to predict the evolutionary potential of populations of S. vulgaris.  相似文献   

8.
The last two decades have seen tremendous growth in the development and application of molecular methods in the analyses of fungal species and populations. In this paper, I provide an overview of the molecular techniques and the basic analytical tools used to address various fundamental population and evolutionary genetic questions in fungi. With increasing availability and decreasing cost, DNA sequencing is becoming a mainstream data acquisition method in fungal evolutionary genetic studies. However, other methods, especially those based on the polymerase chain reaction, remain powerful in addressing specific questions for certain groups of taxa. These developments are bringing fungal population and evolutionary genetics into mainstream ecology and evolutionary biology.  相似文献   

9.
This study explores the genetic structure of Siberian indigenous populations on the basis of standard blood group and protein markers and DNA variable number of tandem repeats (VNTR) variation. Four analytical methods were utilized in this study: Harpending and Jenkin's R-matrix; Harpending and Ward's method of correlating genetic heterozygosity (H) to the distance from the centroid of the gene frequency array (rii); spatial autocorrelation, and Mantel tests. Because of the underlying assumptions of the various methods, the numbers of populations used in the analyses varied from 15 to 62. Since spatial autocorrelation is based upon separate correlations between alleles, a larger number of standard blood markers and populations were used. Fewest Siberian populations have been sampled for VNTRs, thus, only a limited comparison was possible. The four analytical procedures employed in this study yielded complementary results suggestive of the effects of unique historical events, evolutionary forces, and geography on the distribution of alleles in Siberian indigenous populations. The principal components analysis of the R-matrix demonstrated the presence of populational clusters that reflect their phylogenetic relationship. Mantel comparisons of matrices indicate that an intimate relationship exists between geography, languages, and genetics of Siberian populations. Spatial autocorrelation patterns reflect the isolation-by-distance model of Malecot and the possible effects of long-distance migration. Am J Phys Anthropol 104:177–192, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Few species attract much more attention from the public and scientists than the giant panda (Ailuropoda melanoleuca), a popular, enigmatic but highly endangered species. The application of molecular genetics to its biology and conservation has facilitated surprising insights into the biology of giant pandas as well as the effectiveness of conservation efforts during the past decades. Here, we review the history of genetic advances in this species, from phylogeny, demographical history, genetic variation, population structure, noninvasive population census and adaptive evolution to reveal to what extent the current status of the giant panda is a reflection of its evolutionary legacy, as opposed to the influence of anthropogenic factors that have negatively impacted this species. In addition, we summarize the conservation implications of these genetic findings applied for the management of this high‐profile species. Finally, on the basis of these advances and predictable future changes in genetic technology, we discuss future research directions that seem promising for giant panda biology and conservation.  相似文献   

11.
The genetic structure of natural populations of the economically important dipteran species Ceratitis capitatawas analysed using both biochemical and molecular markers. This revealed considerable genetic variation in populations from different geographic regions. The nature of this variation suggests that the evolutionary history of the species involved the spread of individuals from the ancestral African populations through Europe and, more recently, to Latin America, Hawaii and Australia. The observed variation can be explained by various evolutionary forces acting differentially in the different geographic areas, including genetic drift, bottleneck effects, selection and gene flow. The analysis of the intrinsic variability of the medfly's genome and the genetic relationships among populations of this pest is a prerequisite for any control programme.  相似文献   

12.
Since the first investigation 25 years ago, the application of genetic tools to address ecological and evolutionary questions in elasmobranch studies has greatly expanded. Major developments in genetic theory as well as in the availability, cost effectiveness and resolution of genetic markers were instrumental for particularly rapid progress over the last 10 years. Genetic studies of elasmobranchs are of direct importance and have application to fisheries management and conservation issues such as the definition of management units and identification of species from fins. In the future, increased application of the most recent and emerging technologies will enable accelerated genetic data production and the development of new markers at reduced costs, paving the way for a paradigm shift from gene to genome-scale research, and more focus on adaptive rather than just neutral variation. Current literature is reviewed in six fields of elasmobranch molecular genetics relevant to fisheries and conservation management (species identification, phylogeography, philopatry, genetic effective population size, molecular evolutionary rate and emerging methods). Where possible, examples from the Indo-Pacific region, which has been underrepresented in previous reviews, are emphasized within a global perspective.  相似文献   

13.
Linkage disequilibrium--the nonrandom association of alleles at different loci--is a sensitive indicator of the population genetic forces that structure a genome. Because of the explosive growth of methods for assessing genetic variation at a fine scale, evolutionary biologists and human geneticists are increasingly exploiting linkage disequilibrium in order to understand past evolutionary and demographic events, to map genes that are associated with quantitative characters and inherited diseases, and to understand the joint evolution of linked sets of genes. This article introduces linkage disequilibrium, reviews the population genetic processes that affect it and describes some of its uses. At present, linkage disequilibrium is used much more extensively in the study of humans than in non-humans, but that is changing as technological advances make extensive genomic studies feasible in other species.  相似文献   

14.
Fungus-growing termites have a mutualistic relationship with their cultivated fungi. To improve understanding of genetic aspects of this relationship, we examined molecular markers in the fungus-growing termite Odontotermes formosanus and its fungi Termitomyces spp. from the Ryukyu Archipelago. Based on the polymorphic band patterns obtained from arbitrarily primed polymerase chain reaction methods, we constructed cladograms for related colonies of the termites and fungi. The resulting trees indicated that the termites display little genetic variation among the colonies, while the symbiotic fungi consist of two major genetic types. In addition, molecular phylogenetic trees of the symbiotic fungi based on internal transcribed spacer and 18S rDNA suggested that these two types of fungi are different species. We also demonstrated that the fungi comprising the fruiting bodies and fungus combs are identical, and that fungus combs are probably a monoculture within a single termite colony. Our results indicate that horizontal transmission of symbiotic fungi among termite colonies occurred during the evolutionary history of this symbiosis.  相似文献   

15.
The continent of Africa is thought to be the site of origin of all modern humans and is the more recent origin of millions of African Americans. Although Africa has the highest levels of human genetic diversity both within and between populations, it is under-represented in studies of human genetics. Recent advances have been made in understanding the origins of modern humans within Africa, the rate of adaptations due to positive selection, the routes taken in the first migrations of modern humans out of Africa, and the degree of admixture with archaic populations. Africa is also in dire need of effective medical interventions, and studies of genetic variation in Africans will shed light on the genetic basis of diseases and resistance to infectious diseases. Thus, we have tremendous potential to learn about human variation and evolutionary history and to positively impact human health care from studies of genetic diversity in Africa.  相似文献   

16.
Genetic colour polymorphisms are widespread across animals and often subjected to complex selection regimes. Traditionally, colour morphs were used as simple visual markers to measure allele frequency changes in nature, selection, population divergence and speciation. With advances in sequencing technology and analysis methods, several model systems are emerging where the molecular targets of selection are being described. Here, we discuss recent studies on the genetics of sexually selected colour polymorphisms, aiming at (i) reviewing the evidence of sexual selection on colour polymorphisms, (ii) highlighting the genetic architecture, molecular and developmental basis underlying phenotypic colour diversification and (iii) discuss how the maintenance of such polymorphisms might be facilitated or constrained by these. Studies of the genetic architecture of colour polymorphism point towards the importance of tight clustering of colour loci with other trait loci, such as in the case of inversions and supergene structures. Other interesting findings include linkage between colour loci and mate preferences or sex determination, and the role of introgression and regulatory variation in fuelling polymorphisms. We highlight that more studies are needed that explicitly integrate fitness consequences of sexual selection on colour with the underlying molecular targets of colour to gain insights into the evolutionary consequences of sexual selection on polymorphism maintenance.  相似文献   

17.
The isolation-by-distance model predicts that genetic similarity between populations will decrease exponentially as the geographic distance between them increases, because of the limiting effect of geographic distance on rates of gene flow. Many studies of human populations have applied the isolation-by-distance model to genetic variation between local populations in a limited geographic area, but few have done so on a global level, and these few used different models and analytical methods. I assess genetic variation between human populations across the world using data on red blood cell polymorphisms, microsatellite DNA markers, and craniometric traits. The isolation-by-distance model provides an excellent fit to average levels of genetic similarity within geographic distance classes for all three data sets, and the rate of distance decay is the same in all three. These results suggest that a common pattern of global gene flow mediated by geographic distance is detectable in diverse genetic and morphological data. An alternative explanation is that the correspondence between genetic similarity and geographic distance reflects the history of dispersal of the human species out of Africa.  相似文献   

18.
Currently available genetic and archaeological evidence is generally interpreted as supportive of a recent single origin of modern humans in East Africa. However, this is where the near consensus on human settlement history ends, and considerable uncertainty clouds any more detailed aspect of human colonization history. Here, we present a dynamic genetic model of human settlement history coupled with explicit geographical distances from East Africa, the likely origin of modern humans. We search for the best-supported parameter space by fitting our analytical prediction to genetic data that are based on 52 human populations analyzed at 783 autosomal microsatellite markers. This framework allows us to jointly estimate the key parameters of the expansion of modern humans. Our best estimates suggest an initial expansion of modern humans approximately 56,000 years ago from a small founding population of approximately 1,000 effective individuals. Our model further points to high growth rates in newly colonized habitats. The general fit of the model with the data is excellent. This suggests that coupling analytical genetic models with explicit demography and geography provides a powerful tool for making inferences on human-settlement history.  相似文献   

19.
Helminths (worms) include parasitic nematodes (roundworms) and platyhelminths (flatworms). These worms are abundant, and many of them are of agricultural, aquacultural, veterinary and medical importance and cause substantial socioeconomic losses worldwide. The genetic characterization of parasitic nematodes using advanced molecular tools is central to the diagnosis of infections and the control of parasitism. The accurate analysis of genetic variation also underpins studies of their taxonomy, epidemiology and evolutionary history. Although the nuclear genome contains suitable genetic markers (e.g., in ribosomal DNA) for the identification of many species, the large size and high variability of the mt genome consistently provides a rich source of such markers for informative systematic and epidemiological studies both within and among species. There is significant value in establishing a practical platform for the rapid sequencing, annotation and analysis of mt genomic datasets to underpin such fundamental and applied studies of parasitic worms (= helminths). In the last decade, there have been some important advances in the mt genomics of helminths, but next-generation sequencing (NGS) technologies now provide opportunities for high throughput sequencing, assembly and annotation. In this article, we provide a background on mt genomics, cover technological challenges and recent advances, and provide a perspective on future mt genome research of parasitic helminths and its fundamental scientific and biotechnological implications.  相似文献   

20.
Analyses of molecular genetic data have added a new dimension to human evolutionary research. Pioneering studies of variation in human populations were based on analyses of blood groups1 and electromorphs,2 both of which represent qualitative multistate phenotypes. With the development of recombinant DNA methods in the 1970s and 1980s, the focus shifted from gene products to a new and plentiful source of human variability, restriction fragment length polymorphisms (RFLPs).3,4 Finally, the addition of DNA sequencining survey data to the rapidly growing RFLP data base made it feasible for the first time to determine the exact number of nucleotide substitutions between different alleles, as well as to construct gene trees and reconstruct the phylogenetic history of populations.5–7  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号