首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A study of ultrathin sections of normal Chinese hamster cells and cells treated with decreasing concentrations of bivalent cations (Ca2+ and Mg2+) in situ revealed several discrete levels of compaction of DNA-nucleoprotein (DNP) fibrils in mitotic chromosomes and the chromatin of interphase nuclei. At concentrations ranging from 3 mM CaCl2 and 1 mM MgCl2 to ten times less, the chromosomes are found to contain fibrous elements (chromonemata) about 100 nm in diameter. As Ca2+ concentration is gradually decreased to 0.2–0.1 mM, the chromosomes decondense into a number of discrete chromatin structures, the chromomeres. As decondensation proceeds, these chromomeres acquire a rosettelike structure with DNP fibrils radiating from an electron-dense core. Upon complete decondensation of chromosomes, individual chromomeres persist only in the centromeric regions. The following levels of DNP compaction in mitotic chromosomes are suggested: a 10-nm nucleosomal fibril, a 25-nm nucleomeric fibril, and the chromonema, a fibrous structure, about 100 nm in diameter, composed of chromomeres. Interphase nuclei also contain structures which are morphologically similar to the chromomeres of mitotic chromosomes.  相似文献   

2.
The centromeric heterochromatin (CH) of mouse metaphase and interphase chromosomes has been shown to be practically devoid of the chromonemal and chromomeric levels of DNP organization. CH decondensation into DNP-fibrils caused by decreasing Ca2+-ions concentration is accomplished without formation of chromonemata and chromomeres. The peripheral regions of CH, immediately contacting the inner surface of kinetochores, display the highest stability towards the factors inducing the artificial decondensation.  相似文献   

3.
The treatment of isolated metaphase chromosomes with 5 mM Tris buffer caused their decondensation into DNP fibers 10 nm in diameter. The following increase in CaCl2 concentration induced the transition of nucleosomic DNP fibers into DNP fibers 20 nM and 40-50 nM in diameter, and the recovery of the whole chromosomes. However, in the similar conditions, the typical chromosomes (threads about 100 nm thick), chromomeres and G-bands were not reconstructed. According to these data, we assume that DNP threads 40-50 nm in diameter may be artificial (i.e. "pseudochromonemes"). The treatment of isolated chromosomes with 0.35 and 0.6 M NaCl prevents from formation of nucleomeric and pseudochromomeric fibers, although bodies of chromosomes can be recovered after the removal of HMG and H1 proteins. These observations point to a high stability of chromosomal fasteners providing the structural integrity of mitotic chromosomes.  相似文献   

4.
The ultrastructure of G- and R-bands in differentially decondensed chromosomes of Chinese hamster was studied with a gradual decrease in CaCl2 concentration in the medium. The gradual reduction of CaCl2 concentration leads to the decondensation of compact G-bands into chromonemes, chromomeres and further into DNP-fibrils. In the complete local decondensation zones (R-bands), the DNP-fibril orientation is parallel to the chromosome longitudinal axis. These zones have no lateral loops or chromomeres. Thus, different chromosome regions corresponding to G- and R-bands possess different sensibility to the decondensing action. Following the complete decondensation in the calcium-free medium chromosomes can be "reconstructed" by adding Ca2+. The data obtained permit to suggest a "fastener" model of the mitotic chromosome organization in which the chromosome represents an hierarchy of discrete structures--G-bands, chromomeres, nucleomeres (superbeads) and nucleosomes. The structural integrity of these levels is supported by specific protein "fasteners".  相似文献   

5.
6.
Burakov VV  Chentsov IuS 《Tsitologiia》2002,44(10):988-995
This paper deals with the ultrastructure and behavior of interphase chromatin and metaphase chromosomes of L-197 culture cells under experimental conditions, which help to reveal the chromonemal level of chromosomal structure after the treatment of living cells with 0.1% Triton X-100 and 3 mM CaCl2. In these conditions, the chromonemata can be seen as dense chromatin fibers with thickness about 100 nm. Such chromosomes, whose chromonemal substructure after the treatment with hypotonic solution (10 mM Tris-HCl), look like loose chromosomal bodies composed of elementary 30 nm DNP fibrils. On the other hand, if chromosomes, in which chromonemal levels were revealed by 3 mM CaCl2, were treated with etidium bromide and then illuminated by light with length wave about 460 nm, no chromosomal decondensation in hypotonic conditions is observed. Chromonemata in chromosomes stabilized by light retain their density and dimensions. It is very important that chromonemata in stabilizated chromatin of metaphase chromosome keep specific connections between themselves and also general trend in their composition inside the chromosome. Thus, we have found conditions for observation of chromonemal elements in metaphase chromosome, providing the possibility for future three-dimensional investigation of chromonema packing in mitotic chromosomes.  相似文献   

7.
The structural organization of the mouse metaphase chromosomes in the early embryonic development (I-IV cleavages) was studied using serial ultrathin section. It was shown that in the first cleavage the metaphase chromosomes consist of DNP fibrils 20-25 nm in diameter, which are distributed nonuniformly along the chromosomes. It was suggested that parts of chromosomal arms formed by tightly packing DNP fibrils may correspond to the G-bands revealed by the routine Giemsa staining. In metaphase chromosomes of 8-16-cell embryos DNP fibrils form chromonema--thick threads about 90 nm in diameter. The chromonemata are evenly organized along chromosomal arms. The centromeric heterochromatin always consists of DNP fibrils tightly arranged in a block having no chromonemal level of organization. In all the cells studied chromosomes form structural contacts (associations) by their centromeric heterochromatin regions.  相似文献   

8.
We previously reported that exogenous histone H1, when injected into mitotic cells, disrupts the synchronous progression of mitotic events by delaying chromosome decondensation. This strategy was utilized to determine whether any other interphase proteins are also able to disrupt normal mitotic processes, when introduced into the mitotic phase. We found that a chromatin subfraction from bovine liver nuclei induced postmitotic micronuclei formation in a dose-dependent manner when injected into the prometaphase of rat kangaroo kidney epithelial (PtK(2)) cells. Close observation showed that, in the case of injected mitotic cells, the mitotic spindles were disrupted, chromosomes became scattered throughout the cytoplasm, and actin filaments were organized ectopically. In addition, when the fraction was injected into interphase cells, extra actin filaments were formed and microtubule organization was affected. In order to determine whether the micronuclei formation resulted from the ectopic formation of actin filaments, we examined the effect of the actin polymerization inhibitor, cytochalasin D. The results showed that the drug inhibited micronuclei formation. From these findings, we concluded that this chromatin subfraction contains actin polymerization activity, thus causing the disruption of mitotic spindles.  相似文献   

9.
We have used light microscopy and serial thin-section electron microscopy to visualize intermediates of chromosome decondensation during G1 progression in synchronized CHO cells. In early G1, tightly coiled 100-130-nm "chromonema" fibers are visualized within partially decondensed chromatin masses. Progression from early to middle G1 is accompanied by a progressive uncoiling and straightening of these chromonema fibers. Further decondensation in later G1 and early S phase results in predominantly 60-80-nm chromonema fibers that can be traced up to 2-3 microns in length as discrete fibers. Abrupt transitions in diameter from 100-130 to 60-80 nm along individual fibers are suggestive of coiling of the 60-80-nm chromonema fibers to form the thicker 100-130-nm chromonema fiber. Local unfolding of these chromonema fibers, corresponding to DNA regions tens to hundreds of kilobases in length, reveal more loosely folded and extended 30-nm chromatin fibers. Kinks and supercoils appear as prominent features at all observed levels of folding. These results are inconsistent with prevailing models of chromosome structure and, instead, suggest a folded chromonema model of chromosome structure.  相似文献   

10.
Drosophila polytene chromosomes were transformed into lampbrush-like structures by exposure to solutions of alkali-urea. In this process, the chromosomes shorten and widen, and the bands (chromomeres) extend laterally into loops leaving a central core between the paired homologues. The expanded polytene chromosomes are very similar in appearance to the true lampbrush chromosomes of amphibian oocytes and to ordinary chromosomes in pachytene. The denaturing effects of alkali-urea were partially counteracted by return of the treated chromosomes to Ringer solution. These observations are interpreted in terms of recent findings on protein backbones in chromosomes, and indicate that chromosomes generally may have very similar basic organization, despite differences due to species, polyteny and degree of condensation. To gain more information on the specific location of a structural gene, 125I-labelled low molecular weight (containing 5S RNA) was hybridized in situ to normal and lampbrush-like polytene chromosomes. Autoradiography showed silver grain distribution for 5S RNA consistent with hybridization primarily to the loop regions of the lampbrush chromosomes rather than the core. This provides further indirect evidence that structural genes like 5S RNA may be located on the bands (chromomeres) and not the interbands of normal polytene chromosomes.  相似文献   

11.
12.
Scanning electron microscopy (SEM) proves to be an appropriate technique for imaging chromatin organization in meiosis I and II of rye (Secale cereale) down to a resolution of a few nanometers. It could be shown for the first time that organization of basic structural elements (coiled and parallel fibers, chromomeres) changes dramatically during the progression to metaphase I and II. Controlled loosening with proteinase K (after fixation with glutaraldehyde) provides an enhanced insight into chromosome architecture even of highly condensed stages of meiosis. By selective staining with platinum blue, DNA content and distribution can be visualized within compact chromosomes as well as in a complex arrangement of fibers. Chromatin interconnecting threads, which are typically observed in prophase I between homologous and non-homologous chromosomes, stain clearly for DNA. In zygotene transversion of chromatid strands to their homologous counterparts becomes evident. In pachytene segments of synapsed and non-synapsed homologs alternate. At synapsed regions pairing is so intimate that homologous chromosomes form one filament of structural entity. Chiasmata are characterized by chromatid strands which traverse from one homolog to its counterpart. Bivalents are characteristically fused at their telomeric regions. In metaphase I and II there is no structural evidence for primary and secondary constrictions.  相似文献   

13.
Conformational changes in chromatin structure are nowadays the object of intensive research due to its importance for proper regulation of intranuclear processes. The fine structure of chromatin within the DNA replication sites was studied in in situ fixed cells and cells permebilized by low ionic strength solutions in the presence of divalent cations. The latter method provides visualization of higher level chromatin structures such as globular chromomeres and chromonema fibres. Nascent DNA was detected immunochemically using anti-BrdU antibodies on the surface of ultrathin sections prepared from Epon-embedded material. It was shown that newly replicated DNA preferentially localized within the zones filled with globular and fibrillar elements with characteristic diameter of 30 nm, and not in chromonema fibres, while after replication had been completed DNA became embedded into as thick as 60-80 nm chromonema elements. The results obtained are discussed in the context of conception of hierarchical folding of chromatin fibers.  相似文献   

14.
We present a new model of the three-dimensional structure of chromosomes. With DNA and protein staining it could be shown by high-resolution scanning electron microscopy that metaphase chromosomes are mainly composed of DNA packed in "chromomeres" (coiled solenoides) and a dynamic matrix formed of parallel protein fibers. In the centromeric region, the chromomeres are less densely packed, giving insight into the matrix fibers. We postulate that chromosome condensation is achieved by the binding of solenoids to matrix fibers which have contact sites to one another and move antiparallel to each other. As condensation progresses, loops of solenoids accumulate to form additional chromomeres, causing chromosomes to become successively shorter and thicker as more chromomeres are formed. For sterical reasons, a tension vertical to the axial direction forces the chromatids apart. The model can simply explain the enormous variety of chromosome morphology in plant and animal systems by varying only a few cytological parameters. Primary and secondary constrictions and deletions are defined as regions devoid of chromomeres. Even in the highly condensed metaphase, all genes would be easily accessible.  相似文献   

15.
16.
17.
Chromosome scaffold represents a continuous protein substructure revealed in isolated metaphase chromosomes after harsh extraction. According to postulates of the widespread radial loop model the scaffold plays an important role in the formation and maintenance of structural integrity of the mitotic chromosomes. Here, the data concerning the structure and major components of the chromosome scaffold are presented. The experiments suggesting that the scaffold represents a system of discrete linker proteins and the data about high mobility of scaffolding proteins are discussed. Furthermore, the data about higher-level chromatin structures (elementary chromonema and 200–250 nm fibers) and behavior of scaffolding proteins are compared. The results presented agree with the idea that at the present stage it is possible to discriminate chromatin complexes, whose structural integrity is not maintained by the chromosome scaffold.  相似文献   

18.
A micronucleus test in combination with fluorescent in situ hybridization (FISH) using telomere-, centromere-specific probes and 5S and 25S rDNA was used for a detailed analysis of the effects of gamma ray irradiation on the root tip meristem cells of barley, Hordeum vulgare (2n = 14). FISH with four DNA probes was used to examine the involvement of specific chromosomes or chromosome fragments in gamma ray-induced micronuclei formation and then to explain their origin. Additionally, a comparison of the possible origin of the micronuclei induced by physical and chemical treatment: maleic hydrazide (MH) and N-nitroso-N-methylurea (MNU) was done. The micronuclei induced by gamma ray could originate from acentric fragments after chromosome breakage or from whole lagging chromosomes as a result of a dysfunction of the mitotic apparatus. No micronuclei containing only centromeric signals were found. An application of rDNA as probes allowed it to be stated that 5S rDNA–bearing chromosomes are involved in micronuclei formation more often than NOR chromosomes. This work allowed the origin of physically- and chemically-induced micronuclei in barley cells to be compared: the origin of micronuclei was most often from terminal fragments. FISH confirmed its usefulness in the characterization of micronuclei content, as well as in understanding and comparing the mechanisms of the actions of mutagens applied in plant genotoxicity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号