首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Strawberry is one of the most economically important fruit crops in the world. Cytokinins (CKs) play a critical role in plant growth and development, as well as the stress response, and the level of CKs in plants is regulated by synthesis and degradation pathways. The key synthetic enzymes of CKs are isopentenyl transferases (IPTs) and LONELY GUYS (LOGs). We surveyed the strawberry genome and identified seven FvIPT genes and nine FvLOG genes. We analyzed gene structures, conserved domains, and their phylogenetic relationships with rice and Arabidopsis. The isoelectric points and glycosylation sites of the proteins were predicted. We also analyzed tissue- or organ-specific expression patterns of the FvIPT and FvLOG genes. The FvIPT and FvLOG genes showed different expression profiles in different organs. Most FvIPT and FvLOG genes were down-regulated in response to osmotic stress, high-temperature treatment, and exogenous abscisic acid (ABA) application, suggesting possible roles of these genes in the plants’ resistance to abiotic stresses. In addition, we found that the results of bioinformatics analyses to identify cis-regulatory elements may not be consistent with experimental expression data; thus, computer-predicted putative cis-elements need to be confirmed by experiments. Our systematic analyses of the FvIPT and FvLOG families provide a foundation for characterizing the function of these genes in the regulation of growth, development, and stress tolerance in Fragaria vesca, as well as a reference for improving stress tolerance by manipulating CK content.  相似文献   

5.
Plant biotechnology is a dynamically developing science, which comprises many fields of knowledge. Novel plant genetic engineering findings highly influence the improvement of industrial production. These findings mostly concern cis-regulatory elements, which are sequences controlling gene expression at all developmental stages. They comprise of promoters, enhancers, insulators and silencers, which are used to construct synthetic expression cassettes. Examples of most important cis-regulatory elements are reviewed in the present paper. Variability among core promoters content and distal promoter regions impedes evaluation of interactions between them during the artificial promoters construction. Synthetic promoters and artificial expression cassettes trigger a significant increase in gene expression level, better properties and quality of a product. Accumulating knowledge about gene promoters, cis sequences and their cooperating factors allows uniform expression systems and highly predictable results.  相似文献   

6.
7.
Pathogenesis-related proteins (PRs) are the antimicrobial proteins which are commonly used as signatures of defense signaling pathways and systemic acquired resistance. However, in Brassica juncea most of the PR proteins have not been fully characterized and remains largely enigmatic. In this study, full-length cDNA sequences of SA (PR1, PR2, PR5) and JA (PR3, PR12 and PR13) marker genes were isolated from B. juncea and were named as BjPR proteins. BjPR proteins showed maximum identity with known PR proteins of Brassica species. Further, expression profiling of BjPR genes were investigated after hormonal, biotic and abiotic stresses. Pre-treatment with SA and JA stimulators downregulates each other signature genes suggesting an antagonistic relationship between SA and JA in B. juncea. After abscisic acid (ABA) treatment, SA signatures were downregulated while as JA signature genes were upregulated. During Erysiphe cruciferarum infection, SA- and JA-dependent BjPR genes showed distinct expression pattern both locally and systemically, thus suggesting the activation of SA- and JA-dependent signaling pathways. Further, expression of SA marker genes decreases while as JA-responsive genes increases during drought stress. Interestingly, both SA and JA signature genes were induced after salt stress. We also found that BjPR genes displayed ABA-independent gene expression pattern during abiotic stresses thus providing the evidence of SA/JA cross talk. Further, in silico analysis of the upstream regions (1.5 kb) of both SA and JA marker genes showed important cis-regulatory elements related to biotic, abiotic and hormonal stresses.  相似文献   

8.
9.
10.
11.
The genome mining of chickpea (Cicer arietinum L.) revealed a total of 37 putative Dof genes using NCBI BLAST search against the genome with a highly conserved Dof domain. The translated Dof proteins possessed 150–493 amino acid residues with molecular weight ranging from 16.9 to 54.4 kD and pI varied from 4.98 to 9.64 as revealed by ExPASy server ProtParam. The exon–intron organization showed predominance of intronless Dof genes in chickpea. The predicted Dof genes were distributed among the eight chromosomes with a maximum of 9 Dof genes present on chromosome 7 and a single Dof gene was found on chromosome 8.The predominance of segmental gene duplication as compared to tandem duplication was observed which might be the prime cause of Dof gene family expansion in chickpea. The cis-regulatory element analysis revealed the presence of light-responsive, hormone-responsive, endosperm-specific, meristem-specific and stress-responsive elements. Comprehensive phylogenetic analyses of Dof genes of chickpea with Arabidopsis, rice, soybean and pigeonpea revealed several orthologs and paralogs assisting in understanding the putative functions of CaDof genes. The functional divergence and site-specific selective pressures of chickpea Dof genes have been investigated. The bioinformatics-based genome-wide assessment of Dof gene family of chickpea attempted in the present study could be a significant step for deciphering novel Dof genes based on genome-wide expression profiling.  相似文献   

12.
13.
14.
Herein we outline a plausible proteome, encoded by assuming a primeval RNY genetic code. We unveil the primeval phenotype by using only the RNA genotype; it means that we recovered the most ancestral proteome, mostly made of the 8 amino acids encoded by RNY triplets. By looking at those fragments, it is noticeable that they are positioned, not at catalytic sites, but in the cofactor binding sites. It implies that the stabilization of a molecule appeared long before its catalytic activity, and therefore the Ur-proteome comprised a set of proteins modules that corresponded to Cofactor Stabilizing Binding Sites (CSBSs), which we call the primitive bindome. With our method, we reconstructed the structures of the “first protein modules” that Sobolevsky and Trifonov (2006) found by using only RMSD. We also examine the probable cofactors that bound to them. We discuss the notion of CSBSs as the first proteins modules in progenotes in the context of several proposals about the primitive forms of life.  相似文献   

15.

Key message

We herein demonstrated two of the Arabidopsis acyl-CoA-binding proteins (ACBPs), AtACBP4 and AtACBP5, both function in floral lipid metabolism and they may possibly play complementary roles in Arabidopsis microspore-to-pollen development. Histological analysis on transgenic Arabidopsis expressing β-glucuronidase driven from the AtACBP4 and AtACBP5 promoters, as well as, qRTPCR analysis revealed that AtACBP4 was expressed at stages 11–14 in the mature pollen, while AtACBP5 was expressed at stages 7–10 in the microspores and tapetal cells. Immunoelectron microscopy using AtACBP4- or AtACBP5-specific antibodies further showed that AtACBP4 and AtACBP5 were localized in the cytoplasm. Chemical analysis of bud wax and cutin using gas chromatographyflame ionization detector and GC-mass spectrometry analyses revealed the accumulation of cuticular waxes and cutin monomers in acbp4, acbp5 and acbp4acbp5 buds in comparison to the wild type (Col-0). Fatty acid profiling demonstrated a decline in stearic acid and an increase in linolenic acid in acbp4 and acbp4acbp5 buds, respectively, over Col-0. Analysis of inflorescences from acbp4 and acbp5 revealed that there was an increase of AtACBP5 expression in acbp4, and an increase of AtACBP4 expression in acbp5. Deletion analysis of the AtACBP4 and AtACBP5 5′-flanking regions indicated the minimal promoter activity for AtACBP4 (?145/+103) and AtACBP5 (?181/+81). Electrophoretic mobility shift assays identified a pollen-specific cis-acting element POLLEN1 (AGAAA) mapped at AtACBP4 (?157/?153) which interacted with nuclear proteins from flower and this was substantiated by DNase I footprinting.

Abstract

In Arabidopsis thaliana, six acyl-CoA-binding proteins (ACBPs), designated as AtACBP1 to AtACBP6, have been identified to function in plant stress and development. AtACBP4 and AtACBP5 represent the two largest proteins in the AtACBP family. Despite having kelch-motifs and sharing a common cytosolic subcellular localization, AtACBP4 and AtACBP5 differ in spatial and temporal expression. Histological analysis on transgenic Arabidopsis expressing β-glucuronidase driven from the respective AtACBP4 and AtACBP5 promoters, as well as, qRT-PCR analysis revealed that AtACBP4 was expressed at stages 11–14 in mature pollen, while AtACBP5 was expressed at stages 7–10 in the microspores and tapetal cells. Immunoelectron microscopy using AtACBP4- or AtACBP5-specific antibodies further showed that AtACBP4 and AtACBP5 were localized in the cytoplasm. Chemical analysis of bud wax and cutin using gas chromatography-flame ionization detector and GC-mass spectrometry analyses revealed the accumulation of cuticular waxes and cutin monomers in acbp4, acbp5 and acbp4acbp5 buds, in comparison to the wild type. Analysis of inflorescences from acbp4 and acbp5 revealed that there was an increase of AtACBP5 expression in acbp4, and an increase of AtACBP4 expression in acbp5. Deletion analysis of the AtACBP4 and AtACBP5 5′-flanking regions indicated the minimal promoter region for AtACBP4 (?145/+103) and AtACBP5 (?181/+81). Electrophoretic mobility shift assays identified a pollen-specific cis-acting element POLLEN1 (AGAAA) within AtACBP4 (?157/?153) which interacted with nuclear proteins from flower and this was substantiated by DNase I footprinting. These results suggest that AtACBP4 and AtACBP5 both function in floral lipidic metabolism and they may play complementary roles in Arabidopsis microspore-to-pollen development.
  相似文献   

16.
17.
Cyclotides are small plant disulfide-rich and cyclic proteins with a diverse range of biological activities. Cyclotide-like genes show key sequence features of cyclotides and are present in the Poaceae. In this study the cDNA of the nine cyclotide-like genes were cloned and sequenced using 3′RACE from Zea mays. The gene expression of two of these genes (Zmcyc1 and Zmcyc5) were analyzed by real-time PCR in response to biotic (Fusarium graminearum, Ustilago maydis and Rhopalosiphum maydis) and abiotic (mechanical wounding, water deficit and salinity) stresses, as well as in response to salicylic acid and methyl jasmonate elicitors to mimic biotic stresses. All isolated genes showed significant similarity to other cyclotide-like genes and were classified in two separate clusters. Both Zmcyc1 and Zmcyc5 were expressed in all studied tissues with the highest expression in leaves and lowest expression in roots. Wounding, methyl jasmonate and salicylic acid significantly induced the expression of Zmcyc1 and Zmcyc5 genes, but the higher expression was observed for Zmcyc1 as compared with Zmcyc5. Expression levels of these two genes were also induced in inoculated leaves with F. graminearum, U. maydis and also in response to insect infestation. In addition, the 1000-base-pairs (bp) upstream of the promoter of Zmcyc1 and Zmcyc5 genes were identified and analyzed using the PlantCARE database and consequently a large number of similar biotic and abiotic cis-regulatory elements were identified for these two genes.  相似文献   

18.
Azadirachta indica (A. Juss) commonly known as Neem is an important source of valuable natural products and occupies an important place in traditional healthcare system. Naturally, this plant synthesizes a number of tetranortriterpenoids utilizing isoprenoid as substrate flux. Although various phytochemical and pharmacological studies in A. indica have been carried out, but very limited information is available about the biosynthetic pathway as well as structural and regulatory genes involved in synthesis of bioactive molecules. In this study, we have cloned and characterized two genes, AiHMGR1 and AiHMGR2, encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR; EC 1.1.1.34) catalyzing the rate limiting step of the isoprenoid biosynthesis. Two isoforms, AiHMGR1 and AiHMGR2, contain an open reading frame of 1707 and 1695 bp encoding polypeptides of 568 and 545 amino acid residues, respectively. The nucleotide and encoded amino acid sequence analyses suggest that both genes encode polypeptides with necessary structural domains present in other plant HMGRs, however, have different genomic organization. The relative expression analysis suggests that two genes express differentially in various tissues. Out of the two genes, expression of AiHMGR2 showed a direct correlation with azadirachtin accumulation in fruit tissue. The common as well as unique cis-regulatory elements present in both genes might be responsible for differential expression of both the genes in various tissues. The color complementation assay in Escherichia coli suggests that though both AiHMGR1 and AiHMGR2 encode functional proteins, AiHMGR2 is more active as compared to AiHMGR1.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号