首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this paper was to determine the level of five elements, two essential for life [zinc (Zn) and copper (Cu)] and three distinctly toxic [lead (Pb), cadmium (Cd), and mercury (Hg)], in four types of biological material in bones of the dog Canis lupus familiaris. The experiment was carried out on bones from the hip joints of dogs. The samples of cartilage, compact bone, spongy bone, and cartilage with adjacent compact bone came from 26 domestic dogs from northwestern Poland. Concentrations of Cu, Zn, Pb, and Cd were determined by ICP-AES (atomic absorption spectrophotometry) in inductively coupled argon plasma, using a Perkin-Elmer Optima 2000 DV. Determination of Hg concentration was performed by atomic absorption spectroscopy. In the examined bone material from the dog, the greatest concentrations (median) were observed for Zn and the lowest for Hg (98 mg Zn/kg and 0.0015 mg Hg/kg dw, respectively). In cartilage and spongy bone, metal concentrations could be arranged in the following descending order: Zn > Pb > Cu > Cd > Hg. In compact bone, the order was slightly different: Zn > Pb > Cd > Cu > Hg (from median 70 mg/kg dw to 0.002 mg/kg dw). The comparisons of metal concentrations between the examined bone materials showed distinct differences only in relation to Hg: between concentrations in spongy bone, compact bone, and in cartilage, being greater in cartilage than in compact bone, and lower again in spongy bone.  相似文献   

2.
The aims of the study were to determine manganese (Mn), iron (Fe) and strontium (Sr) concentrations in fox bone samples from north-western Poland and to examine the relationships between the bone Mn, Fe and Sr concentrations and the sex and age of the foxes. In the studied samples of fox cartilage, cartilage with adjacent compact bone, compact bone and spongy bone, the concentrations of the analysed metals had the following descending order: Fe > Sr > Mn. The only exception was in compact bone, in which the concentrations were arranged in the order Sr > Fe > Mn. Manganese concentrations were significantly higher in cartilage, compact bone and cartilage with compact bone than in spongy bone. Iron concentrations were higher in cartilage and spongy bone compared with compact bone. Strontium concentrations were greater in compact bone than in cartilage and spongy bone. The manganese, iron and strontium concentrations in the same type of bone material in many cases correlated with each other, with the strongest correlation (r?>?0.70) between Mn and Fe in almost all types of samples. In addition, concentrations of the same metals in different bone materials were closely correlated for Mn and Fe in cartilage and cartilage with adjacent compact bone, and for Sr in compact bone and cartilage with compact bone. In the fox from NW Poland, there were no statistically significant differences in Mn, Fe and Sr in any of the types of bone material between the sexes and immature and adult foxes.  相似文献   

3.
The aim of this research was to determine the concentrations of two essential elements (copper (Cu) and zinc (Zn)) and three toxic elements (lead (Pb), cadmium (Cd) and mercury (Hg)) in the hip joint bones of patients from the Chair and Clinic of Orthopaedics and Traumatology at the Pomeranian Medical University in Szczecin. We examined 111 samples of hip joint bones obtained from patients from north-western Poland who had undergone arthroplasty of the femoral head. In cartilage with the adjacent compact bone, and in spongy bone from the examined patients, the concentrations (medians) determined were placed in the following descending sequence Zn>Pb>Cu>Cd>Hg. The concentrations ranged from 86 mg Zn/kg to 0.0020 mg Hg/kg dw. It was found that the concentration of lead in the cartilage with adjacent compact bone was higher in men than in women. In conclusion, it seems that in addition to routine monitoring of the abiotic environment, it is essential to monitor concentrations of heavy metals having a long-term impact in humans.  相似文献   

4.
The aim of this study was to compare zinc, copper, lead, cadmium, and mercury concentrations in the bones of long-living mammals—humans (Homo sapiens) and Canidae (dogs Canis familiaris and foxes Vulpes vulpes) from northwestern Poland and to determine the usefulness of Canidae as bioindicators of environmental exposure to metals in humans. Zinc concentrations in cartilage with adjacent compact bone and in spongy bone were highest in foxes (~120 mg/kg dry weight (dw)) and lowest in dogs (80 mg/kg dw). Copper concentrations in cartilage with adjacent compact bone were greatest in foxes (1.17 mg/kg dw) and smallest in humans (~0.8 mg/kg dw), while in spongy bone they were greatest in dogs (0.76 mg/kg dw) and lowest in foxes (0.45 mg/kg dw). Lead concentrations in both analyzed materials were highest in dogs (>3 mg/kg dw) and lowest in humans (>0.6 mg/kg dw). Cadmium concentration, also in both the analyzed materials, were highest in foxes (>0.15 mg/kg dw) and lowest in humans (>0.04 mg/kg dw). Mercury concentration in bones was low and did not exceed 0.004 mg/kg dw in all the examined species. The concentrations of essential metals in the bones of the examined long-living mammals were similar. The different concentrations of toxic metals were due to environmental factors. As bone tissues are used in the assessment of the long-term effects of environmental exposure to heavy metals on the human body, ecotoxicological studies on the bones of domesticated and wild long-living mammals, including Canidae, may constitute a significant supplement to this research.  相似文献   

5.
&#  &#  &#  &#  &#  &#  &#  &#  H. A. C. C. PERERA  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2015,39(5):861-868
为了解三峡水库蓄水后鱼体重金属富集现状及其潜在的生态风险和食品安全, 测定了三峡水库上、中、下游不同年龄组铜鱼(Coreius heterodon)和圆口铜鱼(C. guichenoti)肌肉和肝脏中重金属含量。利用等离子吸收光谱法、石墨炉原子吸收光谱法、原子荧光光谱法检测样品中Cu、Zn、Cr、Pb、Cd、Hg、As 等 7种重金属含量。结果表明: 7 种重金属在铜鱼和圆口铜鱼体内的含量水平基本一致, 重金属在铜鱼和圆口铜鱼肌肉中含量大小均为Zn Cu Cr Hg AsPb Cd, 在铜鱼肝脏中含量大小为Zn Cu Pb Cd Cr As Hg, 而在圆口铜鱼肝脏中含量大小为Zn Cu Pb Cr Cd Hg As。铜鱼和圆口铜鱼肝脏中重金属含量显著高于肌肉(P0.05)。两种鱼类间大部分重金属在库区上、中、下游无显著差异(P 0.05)。铜鱼和圆口铜鱼肌肉(可食用部分)中7 种重金属含量均未超过国家食品安全卫生标准, 属于安全食用范围;肝脏中除Cd 和Pb 外的其他元素含量均未超过国家标准。相关结果反映了三峡水库175 m 蓄水后底栖土著经济鱼类重金属的污染状况, 对了解该地区水产品质量安全状况及水产品安全评价提供了参考依据。    相似文献   

6.

Aims and methods

Concentrations of heavy metals such as Cd, As, Hg, Pb, Cr, Cu, Zn and Ni in different tissues (seeds, roots and shoots) of the mature canola (Brassica napus L.) plants and in the associated rhizosphere soils from Yangtze River Delta (YRD) region of China, were determined to evaluate the heavy metals’ pollution in the soils and the canola seeds, and to discuss their accumulation and translocation characteristics in canola plants. At the same time, the phytoextraction potential of the canola plant for the above heavy metals was theoretically calculated and discussed on the basis of above measured data.

Results

The results showed that the concentration ranges of Cd, As, Hg, Pb, Cr, Cu, Zn and Ni in the rhizosphere soils were 0.115–0.481, 3.40–20.5, 0.069–0.682, 9.92–27.4, 46.8–86.6, 17.7–253.3, 65.2–511.7 and 16.0–37.8?mg?kg?1, respectively. The concentrations of Cu, Zn and Hg at some sampling sites exceeded the 2nd grade threshods of Chinese national environmental quality standard for soils. The potential ecological risk of heavy metals in the canola rhizosphere soils decreased in the order of Zhejiang > Shanghai > Jiangsu provinces. The concentration ranges of above heavy metals in the canola seeds were 0.032–0.067, 0.002–0.005, 0.001–0.005, 0.053–0.165, 0.191–0.855, 3.01–13.20, 34.82–96.95 and 0.343–2.86?mg?kg?1, respectively, with Cu and Zn at some sampling sites exceeding the permissible concentrations in foods of China. Heavy metals’ concentrations in canola seeds didn’t increase with their increasing concentrations in the rhizosphere soils. The bioconcentration factors (BCFs) of most heavy metals in the canola seeds decreased with their increasing concentrations in the associated rhizosphere soils. The average BCFs of heavy metals decreased in the order of Zn (0.488)>Cd (0.241)>Cu (0.145)>Ni (0.038)>Hg (0.021)>Pb (0.005)=Cr (0.005)>As (0.000) in the canola seeds, Cd (1.550)>Cu (0.595)>Zn (0.422)>Hg (0.138)>Ni (0.085)>Pb (0.080)>As (0.035)>Cr (0.031) in the roots, and Cd (0.846)>Zn (0.242)>Cu (0.205)>Hg (0.159)>Ni (0.031)>Pb (0.025)>As (0.012)>Cr (0.007) in the shoots, respectively. The accumulation capacity for most of the above heavy metals in the mature canola tissues was root > shoot > seed, with the exceptions of seed > root > shoot for Zn and shoot > root > seed for Hg. Except Hg from root to shoot and Zn from root to seed, translocation factors (TFs) of above heavy metals were lower than 1.0.

Conclusions

The concentrations, BCFs and TFs of above heavy metals in the canola tissues indicated that the investigated canola plants did not meet the criteria of hyperaccumulators for the above heavy metals. The phytoextracton potential of the studied canola plants for the above heavy metals from the polluted soils was very limited. It would take 920, 3,170 and 3,762?years (assuming two crops per year) to reduce the initial soil Zn, Cu and Hg concentrations, respectively, from the most polluted soil concentrations to the 2nd grade thresholds of Chinese national environmental quality standard for soils.  相似文献   

7.
The effect of Cd, Cu, Zn, Hg, and Pb solutions at various concentrations, on the restoration potential of the leaves ofPortulaca oleracea was tested. All the trace metals completely affected the shoot regeneration. The degree of their effect on root regeneration, however, varied. Early initiation of parental leaf decay was also observed. The order of their relative effect on the regeneration process was: Cd > Cu > Zn > Hg > Pb.  相似文献   

8.
Tajan River is among the most significant rivers of the Caspian Sea water basin. In this study, the concentration of Cr, Cu, Fe, Mn, Ni, Pb, Cd, and Zn were determined in brain, heart, liver, gill, bile, and muscle of Rutilus frisii kutum which has great economic value in the Mazandaran state. Trace element levels in fish samples were analyzed by means of atomic absorption spectrometry. Nearly all non-essential metals levels (Ni, Pb, Cd) detected in tissues were higher than limits for fish proposed by FAO/WHO, EU, and TFC. Generally, non-essential metals (Ni, Pb) were so much higher in muscle than the essential metals (Cu, Zn, and Mn) except Fe, which was higher than other metals in nearly all parts, except in gills. Fe distribution pattern in tissues was in order of heart > brain > liver > muscle > bile > gill. Distribution patterns of metal concentrations in the muscle of fish as a main edible part followed the sequence: Fe > Pb > Ni > Cu > Mn > Zn > Cd.  相似文献   

9.
Wine consumption delivers macroelements and microelements necessary for the proper metabolism. On the other hand, wine can be an important source of toxic metals. The aim of this study was to estimate the concentrations of Ca, Cd, Cu, Fe, Hg, Mg, Ni, Pb, and Zn in the Slovak and non-Slovak wines. The concentration of metals was evaluated with respect to the type, the alcohol content, and the age of Slovak wine. The general scheme of concentrations found was as follows Ca > Mg > Fe > Zn > Pb > Cd > Ni > Cu > Hg. The type of wine and the alcohol content do not have a significant impact on metal concentrations. Also, the age of wine has no influence on the mean concentration of metals, except for Zn. Metal concentrations in Slovak and non-Slovak wines indicate similar contents of metals, except for Ni. The contribution to both dietary reference values (DRVs) and provisional tolerable weekly intake (PTWI) evaluations in the Slovak wine suggested low dietary exposure to Ca, Cu, Fe, Mg, Ni, Zn, Cd, Hg, and Pb, respectively. However, we do not suggest that the consumption of all Slovak wines is healthy. The maximum Pb concentrations in Slovak wines exceed the maximum permitted level proposed by the European Commission. This might be proved by the results of the margin of the exposure (MOE) value evaluation in the samples containing the maximum Pb concentrations, showing a high risk of CKD and SBP in high and extreme consumption groups.  相似文献   

10.
Abstract

A total of 83 dust samples were collected from the streets of Urumqi city in NW China and analyzed for the concentrations of As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn elements. The spatial distribution, contamination levels, main sources, and potential health risks of these trace elements were determined based on geostatistical analysis, geo-accumulation index, multivariate analysis, and the health risk assessment model introduced by the USEPA, respectively. The obtained results indicate that the average concentrations of Cd, Cr, Cu, Hg, Ni, Pb, and Zn exceed the corresponding background values determined in Xinjiang soils by factors of 2.0, 1.35, 1.38, 8.24, 1.28, 2.09, and 3.26, respectively. The spatial distribution patterns of the nine trace elements in street dust were found to be substantially heterogeneous, and the contamination level decreased in the following order: Hg?>?Zn?>?Pb?>?Cd?>?Cr?>?Cu?>?As?>?Ni?>?Mn. Based on the identified concentrations, the collected dust samples were found to be moderately polluted by Hg, and not polluted by As, Cr, Cu, Mn, and Ni. The remaining elements, Cd, Pb, and Zn lie on the borderline between non-pollution and moderate pollution levels. Furthermore, it was shown that Mn and Zn in street dusts originate from both, natural and anthropogenic sources, while As, Cd, Cr, Cu, Hg, Ni, and Pb are mainly produced by anthropogenic sources. Overall, the carcinogenic and non-carcinogenic health risks of the analyzed elements, instigated primarily by oral ingestion of street dusts, were found to be within the acceptable range for both, children and adults. As and Cr are the main non-carcinogenic elements, whereas Cr is the major carcinogenic element among the investigated dust-bound metals in the study area.  相似文献   

11.
对内蒙古西部公路绿化植物油松(Pinus tabulaeformis)、小叶杨(Populus simonii)及其根际土壤中重金属元素(Cd、Hg、Pb、Cu、Zn、Ni、Cr)和类金属元素(As和Se)含量以及根际土壤重金属(Cu、Zn、Pb、Ni和Cr)形态、土壤pH值进行了测定。对比分析了公路沿线不同绿化植物及其不同器官对重金属元素的吸收与积累特征。结果表明:绿化植物根际土壤对重金属元素的吸附及污染程度以Cd为最高。随原子序数的递增,小叶杨和油松两种植物的根部和茎叶两种营养器官中重金属的含量均表现出“N”字形变动趋势。而且重金属元素在不同植物不同器官中的含量具有Zn〉Cu〉Ni,Cr,As,Pb〉Cd〉Hg的基本规律。小叶杨茎叶对重金属元素Cr、Ni和Pb的富集能力较根部为强,油松茎叶对重金属元素Cr、Ni、Cu和Pb的富集能力较根部为强。绿化植物根际土壤重金属元素有效态占总量百分比的大小序列为Zn〉Pb〉Ni、Cr〉Cu,与重金属元素在不同植物不同器官中的含量大小序列Zn〉Cu〉Ni、Cr、As、Pb〉Cd〉Hg并非趋于一致。公路绿化植物对根际土壤中重金属元素的吸收和积累与重金属元素有效态所占的比例有关。  相似文献   

12.
《农业工程》2020,40(1):64-71
Twenty five water samples were collected along the Taizihe River, the concentration and health risks of Zn, Cu, Pb, Cr and Cd were detected and evaluated, and the pollution sources was analyzed through principal components analyses. The results indicated that the order of average concentration of heavy metals was follows: Pb > Cr > Cu > Zn and Cd. Among that, the concentrations of Zn, Cu and Cr were at the permissible levels, but Pb and Cd exceeded grade V standard at some sites. The concentrations of Zn and Cu in the wet season were significant higher than that in the dry season (p < 0.05), but the average concentrations of Pb, Cr and Cd were not significantly different in the two seasons (p > 0.05). The annual average risks of human health caused by Cd and Cr were 10−3/a and 10−4/a, respectively, which were higher than the recommended maximum acceptable risk level. The human health risk values of Zn, Pb and Cu were all concentrated at 10−8/a or 10−9/a levels, which did not exceed the recommended standard. On the whole, Cd and Cr were the main health risk pollutants of Taizihe River. Pollution sources of Pb was different from other heavy metals in wet and dry season, Cd and Cr were similar in the wet and dry season. The mainly pollution source of heavy metals was industry, especially mining, metal smelting and electroplating industry.  相似文献   

13.
We conducted an investigation of heavy metal concentrations in Manila clams (Ruditapes philippinarum) and surface sediments after the Dalian Port oil spill. Samples were collected from three mariculture zones (Jinshitan, Dalijia, and Pikou) along the Dalian coast. Heavy metal concentrations in R. philippinarum were consistent and ranked in decreasing order of Zn > Cu > As > Cr > Pb > Cd > Hg, while concentrations in surface sediments were ranked as Zn > Cr > Cu > Pb > As > Cd > Hg, respectively. Bioaccumulation of Zn, Cd, and Hg had obviously occurred in R. philippinarum. Statistically significant correlations (p?<?0.05) between concentrations of Pb, Cd, and Hg in R. philippinarum and in surface sediments were observed. Except for Cr and As, heavy metal concentrations in R. philippinarum were well within the legal limits for human consumption.  相似文献   

14.
The present study was conducted to assess the suitability of sewage sludge amendment (SSA) in soil for Beta vulgaris var. saccharifera (sugar beet) by evaluating the heavy metal accumulation and physiological responses of plants grown at a 10%, 25%, and 50% sewage sludge amendment rate. The sewage sludge amendment was modified by the physicochemical properties of soil, thus increasing the availability of heavy metals in the soil and consequently increasing accumulation in plant parts. Cd, Pb, Ni, and Cu concentrations in roots were significantly higher in plants grown at 25% as compared to 50% SSA; however, Cr and Zn concentration was higher at 50% than 25% SSA. The concentrations of heavy metal showed a trend of Zn > Ni > Cu > Cr > Pb > Cd in roots and Zn > Cu > Ni > Cr > Pb > Cd in leaves. The only instance in which the chlorophyll content did not increase after the sewage sludge treatments was 50%. There were approximately 1.12-fold differences between the control and 50% sewage sludge application for chlorophyll content. The sewage sludge amendment led to a significant increase in Pb, Cr, Cd, Cu, Zn, and Ni concentrations of the soil. The heavy metal accumulation in the soil after the treatments did not exceed the limits for the land application of sewage sludge recommended by the US Environmental Protection Agency (US EPA). The increased concentration of heavy metals in the soil due to the sewage sludge amendment led to increases in heavy metal uptake and the leaf and root concentrations of Ni, Zn, Cd, Cu, Cr, Pb, and Zn in plants as compared to those grown on unamended soil. More accumulation occurred in roots and leaves than in shoots for most of the heavy metals. The concentrations of Cd, Cr, and Pb were more than the permissible limits of national standards in the edible portion of sugar beet grown on different sewage sludge amendment ratios. The study concludes that the sewage sludge amendment in the soil for growing sugar beet may not be a good option due to risk of contamination of Cr, Pb, and Cd.  相似文献   

15.
The flagellate alga Pavlova viridis Tseng was investigated in the laboratory for accumulation of the heavy metals, silver, cadmium, cobalt, copper, mercury, nickel and lead. The cultures were grown in an artificial seawater medium mixed with the individual metals at different concentrations. Based on data from the controls, the baseline metal concentrations in P. viridis were shown to be in an order of Cu > Pb > Co > Cd > Ni > Ag > Hg. In the experimental groups, the seven metals displayed different isotherm equilibrium patterns and the metal uptake capacity of the alga was Ni > Pb > Co > Hg > Cu > Cd > Ag at equilibrium. When assessed using the bioconcentration factors, metal accumulation by P. viridis was demonstrated to be the most efficient at a concentration of 0.001 mg L-1 for Ag, Cd and Co, and at 0.01 mg L-1 for Cu, Hg, Ni and Pb. This study suggests that P. viridis can be a source of mineral supplements in mariculture. The alga is not, however, recognized as an effective agent for removing heavy metals from wastewater. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
To assess the extent and potential hazards of heavy metal pollution at Shanghai Laogang Landfill, the largest landfill in China, surface soil samples were collected near the landfill and concentrations of Cu, Zn, Cd, Pb, and Cr were determined. The results revealed that the concentrations of heavy metals, except Pb, were higher in the surface soil near the landfill than in the background soil. Principal component analysis and hierarchical cluster analysis suggested that the enrichment of Cu in soil was probably related to agricultural activities and Cd and Pb to landfill leachates, whereas Zn and Cr concentrations were probably controlled by soil matrix characteristics. The pollution indices (PIs) of the metals were: Cd > Cu > Cr > Zn > Pb. Among the five measured metals, Cd showed the largest toxic response and might cause higher ecological hazards than other metals. The integrated potential eco-risk index (RI) of the five metals ranged from 26.0 to 104.9, suggesting a low-level eco-risk potential. This study indicated the accumulations of Cu, Zn, Cd, Pb, and Cr did not reach high pollution levels, and therefore posed a low eco-risk potential in surface soil near the landfill.  相似文献   

17.
Trace heavy metals such as Cr(III), Ni(II), Cd(II), Zn(II), Pb(II), and Cu(II) are hazardous pollutants and are rich in areas with high anthropogenic activities. Their concentrations were analyzed using atomic absorption spectroscopy, and it was found that their concentrations were several fold higher in downstream Swan River water samples of the Kahuta Industrial Triangle as compared to upstream. Heavy metal soil concentrations taken from the downstream site were 149% for Cr, 131% for Ni, 176% for Cd, 139% for Zn, 224% for Pb, and 182% for Cu when compared to samples from the upstream site. Quantitative analysis concluded that these metals were higher in milk samples collected from downstream as compared to the samples from upstream water-irrigated sites. The order of metal in milk was as Zn > Cr > Cu > Cd > Pb = Ni. Heavy metal contaminations may affect the drinking water quality, food chain, and ecological environment. It was also suggested that the toxicity due to such polluted water, soil, and milk are seriously dangerous to human health in future.  相似文献   

18.
Abstract

Heavy metals in vegetables are of great concern worldwide due to their potential bioaccumulation in human. This review-based study researched the concentrations of heavy metals in vegetables from all provinces of China between 2004 and 2018, and assessed the health risk for the residents. The results displayed the highest Pb, Cd, Cu, and Zn concentrations in vegetables were 0.192?mg/kg (west area), 0.071?mg/kg (central area), 3.961?mg/kg (central area), and 10.545?mg/kg (central area), which were lower than the maximum allowable concentration. In the national scale, the weighted average level of heavy metals in vegetables was found to be in the order of Zn?>?Cu?>?Pb?>?Cd. The hazard index (HI) of each province showed that beside Anhui and Hunan province, residents in other provinces of China faced a low high risk of Pb, Cd, Cu, and Zn. However, people consuming vegetables faced a high risk of Pb, Cd, Cu, and Zn in Anhui and Hunan provinces. This research may provide insight into heavy metal accumulation in vegetables and forecast to residents to cope with these problems for improved human health.  相似文献   

19.
Concentrations of Fe, Pb, Cu, Zn and Cd were determined during one season in the red alga Gracilaria verrucosa, sediment and seawater from the Thermaikos Gulf, Greece. This region has been subject to change due to increases in industrial and domestic activities. The relative abundance of metals in G. verrucosa and seawater decreased in the order: Fe>Zn>Pb>Cu>Cd and in the sediment: Pb>Fe>Zn>Cu>Cd. Cadmium concentration in the alga correlated positively with that in seawater. There was positive correlation between Fe concentrations in the alga and those of the Zn and Cu. The concentrations of metals in the alga showed no significant differences between the stations. Lead, Zn and Cu concentrations in the alga were slightly higher at Biamyl, whereas Cd was higher at Perea and Fe at Nea Krini. Seasonal variation of metal concentrations in the alga was significant for Cd and Fe. Copper and Fe increased from winter to summer, whereas Cd was the opposite. Zinc concentrations were minimum and Pb concentrations were maximum during spring. These variations are discussed in relation to tissue age, life cycle, ambient concentrations of metals and other environmental conditions. Cd and Pb concentrations inG. verrucosa in the Thermaikos Gulf were higher and those of Cu and Zn were lower than in other species of the genus. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
In the present work the extent and variation of Zn, Cd, Pb, Cu, and Hg loading in undisturbed surface soil (0–5 cm) and the vertical transport of the metals in soil profiles are studied in the vicinity of a zinc smelter in Norway. Three major controlling factors on the metal concentrations in soil have been assessed: 1) distance from the anthropogenic point source; 2) organic matter content (O.M.); and 3) the prevailing wind directions. Moreover metal distributions in proximal soil profiles in 1972 and 2003 are compared. Current concentrations of Zn, Cd, Pb, Cu, and Hg in surface soil reach 14000, 60, 980, 430, and 7.0 mg·kg ? 1 , respectively, near the smelter and decrease regularly with distance in the northerly direction according to the regression model (y = ax? b ). The Zn concentrations are significantly different from the background range up to 30 km from the smelter, whereas the other metals approach background at only 10 km distance. Subsurface concentration peaks of Pb, Cu, and Hg are found at greater depth in soil profiles than peaks of Zn and Cd. Levels of Zn, Cd, and Pb in surface soil seem to have decreased from 1972 to 2003, whereas for Cu the levels appear not to be significantly different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号