首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 600 MHz NMR study of alpha-conotoxin ImI from Conus imperialis, targeting the alpha7 neuronal nicotinic acetylcholine receptor (nAChR), is presented. ImI backbone spatial structure is well defined basing on the NOEs, spin-spin coupling constants, and amide protons hydrogen-deuterium exchange data: rmsd of the backbone atom coordinates at the 2-12 region is 0.28 A in the 20 best structures. The structure is described as a type I beta-turn (positions 2-5) followed by a distorted helix (positions 5-11). Similar structural patterns can be found in all neuronal-specific alpha-conotoxins. Highly mobile side chains of the Asp-5, Arg-7 and Trp-10 residues form a single site for ImI binding to the alpha7 receptor. When depicted with opposite directions of the polypeptide chains, the ImI helix and the tip of the central loop of long chain snake neurotoxins demonstrate a common scaffold and similar positioning of the functional side chains, both of these structural elements appearing essential for binding to the neuronal nAChRs.  相似文献   

2.
The three-dimensional structure of alpha-conotoxin ImI, a potent antagonist targeting the neuronal alpha7 subtype of nicotinic acetylcholine receptor (nAChR), has been investigated by NMR spectroscopy. On the basis of 181 experimental constraints, a total of 25 converged structures were obtained. The average pairwise atomic root mean square difference is 0.40+/-0.11 A for the backbone atoms. The resulting structure indicates the presence of two successive type I beta-turns and a 310 helix for residues Cys2-Cys8 and Ala9-Arg11, respectively, and shows a significant structural similarity to that of alpha-conotoxin PnIA, which is also selective for the neuronal nAChR.  相似文献   

3.
The present work uses alpha-conotoxin ImI (CTx ImI) to probe the neurotransmitter binding site of neuronal alpha7 acetylcholine receptors. We identify key residues in alpha7 that contribute to CTx ImI affinity, and use mutant cycles analysis to identify pairs of residues that stabilize the receptor-conotoxin complex. We first mutated key residues in the seven known loops of alpha7 that converge at the subunit interface to form the ligand binding site. The mutant subunits were expressed in 293 HEK cells, and CTx ImI binding was measured by competition against the initial rate of 125I-alpha-bungarotoxin binding. The results reveal a predominant contribution by Tyr-195 in alpha7, accompanied by smaller contributions by Thr-77, Tyr-93, Asn-111, Gln-117, and Trp-149. Based upon our previous identification of bioactive residues in CTx ImI, we measured binding of receptor and toxin mutations and analyzed the results using thermodynamic mutant cycles. The results reveal a single dominant interaction between Arg-7 of CTx ImI and Tyr-195 of alpha7 that anchors the toxin to the binding site. We also find multiple weak interactions between Asp-5 of CTx ImI and Trp-149, Tyr-151, and Gly-153 of alpha7, and between Trp-10 of CTx ImI and Thr-77 and Asn-111 of alpha7. The overall results establish the orientation of CTx ImI as it bridges the subunit interface and demonstrate close approach of residues on opposing faces of the alpha7 binding site.  相似文献   

4.
Alpha-Conotoxins, peptides produced by predatory species of Conus marine snails, are potent antagonists of nicotinic acetylcholine receptors (nAChRs), ligand-gated ion channels involved in synaptic transmission. We determined the NMR solution structure of the smallest known alpha-conotoxin, ImI, a 12 amino acid peptide that binds specifically to neuronal alpha7-containing nAChRs in mammals. Calculation of the structure was based on a total of 80 upper distance constraints and 31 dihedral angle constraints resulting in 20 representative conformers with an average pairwise rmsd of 0.44 A from the mean structure for the backbone atoms N, Calpha, and C' of residues 2-11. The structure of ImI is characterized by two compact loops, defined by two disulfide bridges, which form distinct subdomains separated by a deep cleft. Two short 310-helical regions in the first loop are followed by a C-terminal beta-turn in the second. The two disulfide bridges and Ala 9 form a rigid hydrophobic core, orienting the other amino acid side chains toward the surface. Comparison of the three-dimensional structure of ImI to those of the larger, 16 amino acid alpha-conotoxins PnIA, PnIB, MII, and EpI-also specific for neuronal nAChRs-reveals remarkable similarity in local backbone conformations and relative solvent-accessible surface areas. The core scaffold is conserved in all five conotoxins, whereas the residues in solvent-exposed positions are highly variable. The second helical region, and the specific amino acids that the helix exposes to solvent, may be particularly important for binding and selectivity. This comparative analysis provides a three-dimensional structural basis for interpretation of mutagenesis data and structure-activity relationships for ImI as well other neuronal alpha-conotoxins.  相似文献   

5.
The activity of alpha-conotoxin (alpha-CTX) ImI, from the vermivorous marine snail Conus imperialis, has been studied on mammalian nicotinic receptors on bovine chromaffin cells and at the rat neuromuscular junction. Synthetic alpha-CTX ImI was a potent inhibitor of the neuronal nicotinic response in bovine adrenal chromaffin cells (IC50 = 2.5 microM, log IC50 = 0.4 +/- 0.07), showing competitive inhibition of nicotine-evoked catecholamine secretion. Alpha-CTX ImI also inhibited nicotine-evoked 45Ca2+ uptake but not 45Ca2+ uptake stimulated by 56 mM K+. In contrast, alpha-CTX ImI had no effect at the neuromuscular junction over the concentration range 1-20 microM. Bovine chromaffin cells are known to contain the alpha3beta4, alpha7, and (possibly) alpha3beta4alpha5 subtypes. However, the secretory response of bovine chromaffin cells is not inhibited by alpha-bungarotoxin, indicating that alpha7 nicotinic receptors are not involved. We propose that alpha-CTX Iml interacts selectively with the functional (alpha3beta4 or alpha3beta4alpha5) nicotinic acetylcholine receptor to inhibit the neuronal-type nicotinic response in bovine chromaffin cells.  相似文献   

6.
The neuronal nicotinic acetylcholine receptors constitute a highly diverse group, with subtypes consisting of pentameric combinations of alpha and beta subunits. alpha-Conotoxins are a homologous series of small peptides that antagonize these receptors. We present the three-dimensional solution structure of alpha-conotoxin AuIB, the first 15-residue alpha-conotoxin known to selectively block the alpha(3)beta(4) nicotinic acetylcholine receptor subtype. The pairwise backbone and heavy-atom root mean square deviation for an ensemble of 20 structures are 0.269 and 0.720 A, respectively. The overall fold of alpha-conotoxin AuIB closely resembles that of the alpha4/7 subfamily alpha-conotoxins. However, the absence of Tyr(15), normally present in other alpha4/7 members, results in tight bending of the backbone at the C terminus and effectively renders Asp(14) to assume the spatial location of Tyr(15) present in other neuronal alpha4/7 alpha-conotoxins. Structural comparison of alpha-conotoxin AuIB with the alpha(3)beta(2) subtype-specific alpha-conotoxin MII shows different electrostatic surface charge distributions, which may be important in differential receptor subtype recognition.  相似文献   

7.
The effects of the native alpha-conotoxin PnIA, its synthetic derivative [A10L]PnIA and alanine scan derivatives of [A10L]PnIA were investigated on chick wild type alpha7 and alpha7-L247T mutant nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes. PnIA and [A10L]PnIA inhibited acetylcholine (ACh)-activated currents at wtalpha7 receptors with IC50 values of 349 and 168 nm, respectively. Rates of onset of inhibition were similar for PnIA and [A10L]PnIA; however, the rate of recovery was slower for [A10L]PnIA, indicating that the increased potency of [A10L]PnIA at alpha7 receptors is conveyed by its slower rate of dissociation from the receptors. All the alanine mutants of [A10L]PnIA inhibited ACh-activated currents at wtalpha7 receptors. Insertion of an alanine residue between position 5 and 13 and at position 15 significantly reduced the ability of [A10L]PnIA to inhibit ACh-evoked currents. PnIA inhibited the non-desensitizing ACh-activated currents at alpha7-L247T receptors with an IC50 194 nm. In contrast, [A10L]PnIA and the alanine mutants potentiated the ACh-activated current alpha7-L247T receptors and in addition [A10L]PnIA acted as an agonist. PnIA stabilized the receptor in a state that is non-conducting in both the wild type and mutant receptors, whereas [A10L]PnIA stabilized a state that is non-conducting in the wild type receptor and conducting in the alpha7-L247T mutant. These data indicate that the change of a single amino acid side-chain, at position 10, is sufficient to change the toxin specificity for receptor states in the alpha7-L247T mutant.  相似文献   

8.
We have determined a high-resolution three-dimensional structure of alpha-conotoxin BuIA, a 13-residue peptide toxin isolated from Conus bullatus. Despite its unusual 4/4 disulfide bond layout alpha-conotoxin BuIA exhibits strong antagonistic activity at alpha6/alpha3beta2beta3, alpha3beta2, and alpha3beta4 nAChR subtypes like some alpha4/7 conotoxins. alpha-Conotoxin BuIA lacks the C-terminal beta-turn present within the second disulfide loop of alpha4/7 conotoxins, having only a "pseudo omega-shaped" molecular topology. Nevertheless, it contains a functionally critical two-turn helix motif, a feature ubiquitously found in alpha4/7 conotoxins. Such an aspect seems mainly responsible for similarities in the receptor recognition profile of alpha-conotoxin BuIA to alpha4/7 conotoxins. Structural comparison of alpha-conotoxin BuIA with alpha4/7 conotoxins and alpha4/3 conotoxin ImI suggests that presence of the second helical turn portion of the two-turn helix motif in alpha4/7 and alpha4/4 conotoxins may be important for binding to the alpha3 and/or alpha6 subunit of nAChR.  相似文献   

9.
A novel conotoxin, alpha-conotoxin ImII (alpha-CTx ImII), identified from Conus imperialis venom ducts, was chemically synthesized. A previously characterized C. imperialis conotoxin, alpha-conotoxin ImI (alpha-CTx ImI), is closely related; 9 of 12 amino acids are identical. Both alpha-CTx ImII and alpha-CTx ImI functionally inhibit heterologously expressed rat alpha7 nAChRs with similar IC(50) values. Furthermore, the biological activities of intracranially applied alpha-CTx ImI and alpha-CTx ImII are similar over the same dosage range, and are consistent with alpha7 nAChR inhibition. However, unlike alpha-CTx ImI, alpha-CTx ImII was not able to block the binding of alpha-bungarotoxin to alpha7 nAChRs. alpha-Conotoxin ImI and alpha-bungarotoxin-binding sites have been well characterized as overlapping and located at the cleft between adjacent nAChR subunits. Because alpha-CTx ImI and alpha-CTx ImII share extensive sequence homology, the inability of alpha-CTx ImII to compete with alpha-BgTx is surprising. Furthermore, functional studies in oocytes indicate that there is no overlap between functional binding sites of alpha-CTx ImI and alpha-CTx ImII. Like alpha-CTx ImI, the block by alpha-CTx ImII is voltage-independent. Thus, alpha-CTx ImII represents a probe for a novel antagonist binding site, or microsite, on the alpha7 nAChR.  相似文献   

10.
The alpha9 and alpha10 nicotinic cholinergic subunits assemble to form the receptor believed to mediate synaptic transmission between efferent olivocochlear fibers and hair cells of the cochlea, one of the few examples of postsynaptic function for a non-muscle nicotinic acetylcholine receptor (nAChR). However, it has been suggested that the expression profile of alpha9 and alpha10 overlaps with that of alpha7 in the cochlea and in sites such as dorsal root ganglion neurons, peripheral blood lymphocytes, developing thymocytes, and skin. We now report the cloning, total synthesis, and characterization of a novel toxin alpha-conotoxin PeIA that discriminates between alpha9alpha10 and alpha7 nAChRs. This is the first toxin to be identified from Conus pergrandis, a species found in deep waters of the Western Pacific. Alpha-conotoxin PeIA displayed a 260-fold higher selectivity for alpha-bungarotoxin-sensitive alpha9alpha10 nAChRs compared with alpha-bungarotoxin-sensitive alpha7 receptors. The IC50 of the toxin was 6.9 +/- 0.5 nM and 4.4 +/- 0.5 nM for recombinant alpha9alpha10 and wild-type hair cell nAChRs, respectively. Alpha-conotoxin PeIA bears high resemblance to alpha-conotoxins MII and GIC isolated from Conus magus and Conus geographus, respectively. However, neither alpha-conotoxin MII nor alpha-conotoxin GIC at concentrations of 10 microM blocked acetylcholine responses elicited in Xenopus oocytes injected with the alpha9 and alpha10 subunits. Among neuronal non-alpha-bungarotoxin-sensitive receptors, alpha-conotoxin PeIA was also active at alpha3beta2 receptors and chimeric alpha6/alpha3beta2beta3 receptors. Alpha-conotoxin PeIA represents a novel probe to differentiate responses mediated either through alpha9alpha10 or alpha7 nAChRs in those tissues where both receptors are expressed.  相似文献   

11.
Alpha-conotoxins from Conus snails are indispensable tools for distinguishing various subtypes of nicotinic acetylcholine receptors (nAChRs), and synthesis of alpha-conotoxin analogs may yield novel antagonists of higher potency and selectivity. We incorporated additional positive charges into alpha-conotoxins and analyzed their binding to nAChRs. Introduction of Arg or Lys residues instead of Ser12 in alpha-conotoxins GI and SI, or D12K substitution in alpha-conotoxin SIA increased the affinity for both the high- and low-affinity sites in membrane-bound Torpedo californica nAChR. The effect was most pronounced for [D12K]SIA with 30- and 200-fold enhancement for the respective sites, resulting in the most potent alpha-conotoxin blocker of the Torpedo nAChR among those tested. Similarly, D14K substitution in alpha-conotoxin [A10L]PnIA, a blocker of neuronal alpha7 nAChR, was previously shown to increase the affinity for this receptor and endowed [A10L,D14K]PnIA with the capacity to distinguish between acetylcholine-binding proteins from the mollusks Lymnaea stagnalis and Aplysia californica. We found that [A10L,D14K]PnIA also distinguishes two alpha7-like anion-selective nAChR subtypes present on identified neurons of L. stagnalis: [D14K] mutation affected only slightly the potency of [A10L]PnIA to block nAChRs on neurons with low sensitivity to alpha-conotoxin ImI, but gave a 50-fold enhancement of blocking activity in cells with high sensitivity to ImI. Therefore, the introduction of an additional positive charge in the C-terminus of alpha-conotoxins targeting some muscle or neuronal nAChRs made them more discriminative towards the respective nAChR subtypes. In the case of muscle-type alpha-conotoxin [D12K]SIA, the contribution of the Lys12 positive charge to enhanced affinity towards Torpedo nAChR was rationalized with the aid of computer modeling.  相似文献   

12.
alpha-Conotoxins, from cone snails, and alpha-neurotoxins, from snakes, are competitive inhibitors of nicotinic acetylcholine receptors (nAChRs) that have overlapping binding sites in the ACh binding pocket. These disulphide-rich peptides are used extensively as tools to localize and pharmacologically characterize specific nAChRs subtypes. Recently, a homology model based on the high-resolution structure of an ACh binding protein (AChBP) allowed the three-fingered alpha-neurotoxins to be docked onto the alpha7 nAChR. To investigate if alpha-conotoxins interact with the nAChR in a similar manner, we built homology models of human alpha7 and alpha3beta2 nAChRs, and performed docking simulations of alpha-conotoxins ImI, PnIB, PnIA and MII using the program GOLD. Docking revealed that alpha-conotoxins have a different mode of interaction compared with alpha-neurotoxins, with surprisingly few nAChR residues in common between their overlapping binding sites. These docking experiments show that ImI and PnIB bind to the ACh binding pocket via a small cavity located above the beta9/beta10 hairpin of the (+)alpha7 nAChR subunit. Interestingly, PnIB, PnIA and MII were found to bind in a similar location on alpha7 or alpha3beta2 receptors mostly through hydrophobic interactions, while ImI bound further from the ACh binding pocket, mostly through electrostatic interactions. These findings, which distinguish alpha-conotoxin and alpha-neurotoxin binding modes, have implications for the rational design of selective nAChR antagonists.  相似文献   

13.
K H Mok  K H Han 《Biochemistry》1999,38(37):11895-11904
The three-dimensional solution conformation of an 11-residue antitoxic analogue of alpha-conotoxin GI, des-Glu1-[Cys3Ala]-des-Cys13-conotoxin GI (CANPACGRHYS-NH(2), designated "GI-15" henceforth), has been determined using two-dimensional (1)H NMR spectroscopy. The disulfide loop region (1C-6C) and the C-terminal tail (8R-11S) are connected by a flexible hinge formed near 7G, and the pairwise backbone rmsds for the former and the latter are 0.58 and 0.65 A, respectively. Superpositioning GI-15 with the structure of alpha-conotoxin GI shows that the two share an essentially identical fold in the common first disulfide loop region (1C-6C). However, the absence of the second disulfide loop in GI-15 results in segmental motion of the C-terminal half, causing the key receptor subtype selectivity residue 8R (Arg9 in alpha-conotoxin GI) to lose its native spatial orientation. The combined features of structural equivalence in the disulfide loop and a mobile C-terminal tail appear to be responsible for the activity of GI-15 as a competitive antagonist against native toxin. Electrostatic surface potential comparisons of the first disulfide region of GI-15 with other alpha-conotoxins or receptor-bound states of acetylcholine and d-tubocurarine show a common protruding surface that may serve as the minimal binding determinant for the neuromuscular acetylcholine receptor alpha 1-subunit. On the basis of the original "Conus toxin macrosite model" [Olivera, B. M., Rivier, J., Scott, J. K., Hillyard, D. R., and Cruz, L. J. (1991) J. Biol. Chem. 266, 1923-1936], we propose a revised binding model which incorporates these results.  相似文献   

14.
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. Alpha subunits, together with beta 2 and/or beta 4 subunits, form ligand-binding sites at alpha/beta subunit interfaces. Predatory marine snails of the genus Conus are a rich source of nAChR-targeted peptides. Using conserved features of the alpha-conotoxin signal sequence and 3'-untranslated sequence region, we have cloned a novel gene from the fish-eating snail, Conus bullatus; the gene codes for a previously unreported alpha-conotoxin with unusual 4/4 spacing of amino acids in the two disulfide loops. Chemical synthesis of the predicted mature toxin was performed. The resulting peptide, alpha-conotoxin BuIA, was tested on cloned nAChRs expressed in Xenopus oocytes. The peptide potently blocks numerous rat nAChR subtypes, with highest potency for alpha 3- and chimeric alpha 6-containing nAChRs; BuIA blocks alpha 6/alpha 3 beta 2 nAChRs with a 40,000-fold lower IC(50) than alpha 4 beta 2 nAChRs. The kinetics of toxin unblock are dependent on the beta subunit. nAChRs with a beta 4 subunit have very slow off-times, compared with the corresponding beta 2 subunit-containing nAChR. In each instance, rat alpha x beta 4 may be distinguished from rat alpha x beta 2 by the large difference in time to recover from toxin block. Similar results are obtained when comparing mouse alpha 3 beta 2 to mouse alpha 3 beta 4, and human alpha 3 beta2 to human alpha 3 beta 4, indicating that the beta subunit dependence extends across species. Thus, alpha-conotoxin BuIA also represents a novel probe for distinguishing between beta 2- and beta 4-containing nAChRs.  相似文献   

15.
Microinjections (50 nl) of nicotine (0.01-10 microM) into the nucleus of the solitary tract (NTS) of adult, urethan-anesthetized, artificially ventilated, male Wistar rats, elicited decreases in blood pressure and heart rate. Prior microinjections of alpha-bungarotoxin (alpha-BT) and alpha-conotoxin ImI (specific toxins for nicotinic receptors containing alpha7 subunits) elicited a 20-38% reduction in nicotine responses. Similarly, prior microinjections of hexamethonium, mecamylamine, and alpha-conotoxin AuIB (specific blockers or toxin for nicotinic receptors containing alpha3beta4 subunits) elicited a 47-79% reduction in nicotine responses. Nicotine responses were completely blocked by prior sequential microinjections of alpha-BT and mecamylamine into the NTS. Complete blockade of excitatory amino acid receptors (EAARs) in the NTS did not attenuate the responses to nicotine. It was concluded that 1) the predominant type of nicotinic receptor in the NTS contains alpha3beta4 subunits, 2) a smaller proportion contains alpha7 subunits, 3) the presynaptic nicotinic receptors in the NTS do not contribute to nicotine-induced responses, and 4) EAARs in the NTS are not involved in mediating responses to nicotine.  相似文献   

16.
Ellison M  Gao F  Wang HL  Sine SM  McIntosh JM  Olivera BM 《Biochemistry》2004,43(51):16019-16026
The Conus peptides alpha-conotoxin ImI (alpha-ImI) and ImII (alpha-ImII) differ by only three of 11 residues in their primary sequences and yet are shown to inhibit the human alpha7 nicotinic acetylcholine receptor (nAChR) by targeting different sites. Mutations at both faces of the classical ligand binding site of the alpha7 nAChR strongly affect antagonism by alpha-ImI but not alpha-ImII. The effects of the mutations on alpha-ImI binding and functional antagonism are explained by computational docking of the NMR structure of alpha-ImI to a homology model of the ligand binding domain of the alpha7 nAChR. A distinct binding site for alpha-ImII is further demonstrated by its weakened antagonism for a chimeric receptor in which the membrane-spanning domains and intervening linkers of the alpha7 nAChR are replaced with the corresponding sequence from the serotonin type-3 receptor (5HT(3)). The two toxins also discriminate between different subtypes of human nicotinic receptors; alpha-ImII most strongly blocks the human alpha7 and alpha1beta1deltaepsilon receptor subtypes, while alpha-ImI most potently blocks the human alpha3beta2 subtype. Collectively, the data show that while alpha-ImI targets the classical competitive ligand binding site in a subtype selective manner, alpha-ImII is a probe of a novel inhibitory site in homomeric alpha7 nAChRs.  相似文献   

17.
Nicotinic acetylcholine receptors (nAChRs) that contain an alpha7 subunit are widely distributed in neuronal and nonneuronal tissue. These receptors are implicated in the release of neurotransmitters such as glutamate and in functions ranging from thought processing to inflammation. Currently available ligands for alpha7 nAChRs have substantial affinity for one or more other nAChR subtypes, including those with an alpha1, alpha3, alpha6, and/or alpha9 subunit. An alpha-conotoxin gene was cloned from Conus arenatus. Predicted peptides were synthesized and found to potently block alpha3-, alpha6-, and alpha7-containing nAChRs. Structure-activity information regarding conotoxins from distantly related Conus species was employed to modify the C. arenatus derived toxin into a novel, highly selective alpha7 nAChR antagonist. This ligand, alpha-CtxArIB[V11L,V16D], has low nanomolar affinity for rat alpha7 homomers expressed in Xenopus laevis oocytes, and antagonism is slowly reversible. Kinetic analysis provided insight into the mechanism of antagonism. alpha-CtxArIB interacts with five ligand binding sites per alpha7 receptor, and occupation of a single site is sufficient to block function. The peptide was also shown to be highly selective in competition binding assays in rat brain membranes. alpha-CtxArIB[V11L,V16D] is the most selective ligand yet reported for alpha7 nAChRs.  相似文献   

18.
A high resolution structure of alpha-conotoxin EI has been determined by (1)H NMR spectroscopy and molecular modeling. alpha-Conotoxin EI has the same disulfide framework as alpha 4/7 conotoxins targeting neuronal nicotinic acetylcholine receptors but antagonizes the neuromuscular receptor as do the alpha 3/5 and alpha A conotoxins. The unique binding preference of alpha-conotoxin EI to the alpha(1)/delta subunit interface of Torpedo neuromuscular receptor makes it a valuable structural template for superposition of various alpha-conotoxins possessing distinct receptor subtype specificities. Structural comparison of alpha-conotoxin EI with the gamma-subunit favoring alpha-conotoxin GI suggests that the Torpedo delta-subunit preference of the former originates from its second loop. Superposition of three-dimensional structures of seven alpha-conotoxins reveals that the estimated size of the toxin-binding pocket in nicotinic acetylcholine receptor is approximately 20 A (height) x 20 A (width) x 15 A (thickness).  相似文献   

19.
A Pardi  A Galdes  J Florance  D Maniconte 《Biochemistry》1989,28(13):5494-5501
Two-dimensional NMR data have been used to generate solution structures of alpha-conotoxin G1, a potent peptide antagonist of the acetylcholine receptor. Structural information was obtained in the form of proton-proton internuclear distance constraints, and initial structures were produced with a distance geometry algorithm. Energetically more favorable structures were generated by using the distance geometry structures as input for a constrained energy minimization program. The results of both of these calculations indicate that the overall backbone conformation of the molecule is well-defined by the NMR data whereas the side-chain conformations are generally less well-defined. The main structural features derived from the NMR data were the presence of tight turns centered on residues Pro5 and Arg9. The solution structures are compared with previous proposed models of conotoxin G1, and the NMR data are interpreted in conjunction with chemical modification studies and structural properties of other antagonists of the acetylcholine receptor to gain insight into structure-activity relationships in these peptide toxins.  相似文献   

20.
Disulfide bonds are important structural motifs that play an essential role in maintaining the conformational stability of many bioactive peptides. Of particular importance are the conotoxins, which selectively target a wide range of ion channels that are implicated in numerous disease states. Despite the enormous potential of conotoxins as therapeutics, their multiple disulfide bond frameworks are inherently unstable under reducing conditions. Reduction or scrambling by thiol-containing molecules such as glutathione or serum albumin in intracellular or extracellular environments such as blood plasma can decrease their effectiveness as drugs. To address this issue, we describe a new class of selenoconotoxins where cysteine residues are replaced by selenocysteine to form isosteric and nonreducible diselenide bonds. Three isoforms of alpha-conotoxin ImI were synthesized by t-butoxycarbonyl chemistry with systematic replacement of one ([Sec(2,8)]ImI or [Sec(3,12)]ImI), or both ([Sec(2,3,8,12)]ImI) disulfide bonds with a diselenide bond. Each analogue demonstrated remarkable stability to reduction or scrambling under a range of chemical and biological reducing conditions. Three-dimensional structural characterization by NMR and CD spectroscopy indicates conformational preferences that are very similar to those of native ImI, suggesting fully isomorphic structures. Additionally, full bioactivity was retained at the alpha7 nicotinic acetylcholine receptor, with each selenoanalogue exhibiting a dose-response curve that overlaps with wild-type ImI, thus further supporting an isomorphic structure. These results demonstrate that selenoconotoxins can be used as highly stable scaffolds for the design of new drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号