首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme.  相似文献   

2.
Soluble quinoprotein dehydrogenases oxidize a wide range of sugar, alcohol, amine, and aldehyde substrates. The physiological electron acceptors for these enzymes are not pyridine nucleotides but are other soluble redox proteins. This makes these enzymes and their electron acceptors excellent systems with which to study mechanisms of long-range interprotein electron transfer reactions. The tryptophan tryptophylquinone (TTQ)-dependent methylamine dehydrogenase (MADH) transfers electrons to a blue copper protein, amicyanin. It has been possible to alter the rate of electron transfer by using different redox forms of MADH, varying reaction conditions, and performing site-directed mutagenesis on these proteins. From kinetic and thermodynamic analyses of the reaction rates, it was possible to determine whether a change in rate is due a change in Delta G(0), electronic coupling, reorganization energy or kinetic mechanism. Examples of each of these cases are discussed in the context of the known crystal structures of the electron transfer protein complexes. The pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase transfers electrons to a c-type cytochrome. Kinetic and thermodynamic analyses of this reaction indicated that this electron transfer reaction was conformationally coupled. Quinohemoproteins possess a quinone cofactor as well as one or more c-type hemes within the same protein. The structures of a PQQ-dependent quinohemoprotein alcohol dehydrogenase and a TTQ-dependent quinohemoprotein amine dehydrogenase are described with respect to their roles in intramolecular and intermolecular protein electron transfer reactions.  相似文献   

3.
Involvement of mammalian mitochondrial glycerophosphate dehydrogenase (mGPDH, EC 1.1.99.5) in reactive oxygen species (ROS) generation was studied in brown adipose tissue mitochondria by different spectroscopic techniques. Spectrofluorometry using ROS-sensitive probes CM-H2DCFDA and Amplex Red was used to determine the glycerophosphate- or succinate-dependent ROS production in mitochondria supplemented with respiratory chain inhibitors antimycin A and myxothiazol. In case of glycerophosphate oxidation, most of the ROS originated directly from mGPDH and coenzyme Q while complex III was a typical site of ROS production in succinate oxidation. Glycerophosphate-dependent ROS production monitored by KCN-insensitive oxygen consumption was highly activated by one-electron acceptor ferricyanide, whereas succinate-dependent ROS production was unaffected. In addition, superoxide anion radical was detected as a mGPDH-related primary ROS species by fluorescent probe dihydroethidium, as well as by electron paramagnetic resonance (EPR) spectroscopy with DMPO spin trap. Altogether, the data obtained demonstrate pronounced differences in the mechanism of ROS production originating from oxidation of glycerophosphate and succinate indicating that electron transfer from mGPDH to coenzyme Q is highly prone to electron leak and superoxide generation.  相似文献   

4.
Involvement of mammalian mitochondrial glycerophosphate dehydrogenase (mGPDH, EC 1.1.99.5) in reactive oxygen species (ROS) generation was studied in brown adipose tissue mitochondria by different spectroscopic techniques. Spectrofluorometry using ROS-sensitive probes CM-H2DCFDA and Amplex Red was used to determine the glycerophosphate- or succinate-dependent ROS production in mitochondria supplemented with respiratory chain inhibitors antimycin A and myxothiazol. In case of glycerophosphate oxidation, most of the ROS originated directly from mGPDH and coenzyme Q while complex III was a typical site of ROS production in succinate oxidation. Glycerophosphate-dependent ROS production monitored by KCN-insensitive oxygen consumption was highly activated by one-electron acceptor ferricyanide, whereas succinate-dependent ROS production was unaffected. In addition, superoxide anion radical was detected as a mGPDH-related primary ROS species by fluorescent probe dihydroethidium, as well as by electron paramagnetic resonance (EPR) spectroscopy with DMPO spin trap. Altogether, the data obtained demonstrate pronounced differences in the mechanism of ROS production originating from oxidation of glycerophosphate and succinate indicating that electron transfer from mGPDH to coenzyme Q is highly prone to electron leak and superoxide generation.  相似文献   

5.
Glutathione reductase has been found to catalyze an NAD(P)H-dependent electron transfer to 2,4,6-trinitrobenzenesulfonate (TNBS). In the presence of oxygen TNBS is not consumed in the reaction, but is rapidly reoxidized with concomitant production of hydrogen peroxide. Cytochrome c can replace oxygen as the final electron acceptor, indicating that a one-electron transfer takes place. The rate is slightly higher in the absence than in the presence of oxygen, ruling out superoxide anion as an obligatory intermediate in cytochrome c reduction. In the absence of oxygen (or cytochrome c), TNBS limits the reaction and accepts a total of four electrons. The TNBS-dependent NADPH (or NADH) oxidation is markedly stimulated by NADP+, and to a smaller extent also by NAD+. The TNBS-dependent reactions are inhibited by excess of NADPH but not by NADH. The kinetics of these reactions are consistent with a branching reaction mechanism in which a pathway including a ternary complex between the two-electron reduced enzyme and NADP+ has the highest turnover. NADPH-dependent reductions of ferricyanide or 2,6-dichloroindophenol catalyzed by glutathione reductase are also markedly influenced by NADP+. Evidently NADP+ facilitates a shift of the catalyzed reaction from the normal two-electron reduction of glutathione disulfide to a more unspecific one-electron reduction of other acceptors. Spectral as well as kinetic data suggest that the rate of radical formation limits the reactions with the artificial electron acceptors and that NADP+ promotes this rate-limiting step.  相似文献   

6.
1. Double-reciprocal plots of initial reaction rates of methanol dehydrogenase [alcohol--(acceptor) oxidoreductase, EC 1.1.99.8] in vitro show patterns of parallel lines. The results with various methanol, ammonia and phenazine methosulphate concentrations can be described by an equation valid for a Ping Pong kinetic mechanism with three reactants. 2. The overall maximum velocity was the same for several primary alcohols, C(2)-deuterated ethanols and different electron acceptors, but it was significantly lower for C(1)-deuterated substrates. 3. Oxidation of the isolated enzyme with electron acceptors required the presence of ammonia and a high pH. The inclusion of cyanide or hydroxylamine during the incubation was essential to prevent enzyme inactivation. The absorbance spectrum of an oxidized form of the enzyme was clearly different from that of the isolated enzyme and the free radical was no longer present. On addition of substrate, the original absorption spectrum and electron-spin-resonance signal reappeared and a concomitant substrate oxidation was found. This reaction could be carried out at pH 7 and ammonia was not required. 4. Based on the activity of the enzyme with one-electron acceptors, the presence of a free radical and the kinetic behaviour, an oxidation of the enzyme via one-electron steps is proposed.  相似文献   

7.
The rates of electron flow catalyzed by a variety of unsubstituted and C- or N-methylated quinonediimine electron acceptors in a reaction requiring photosystem II in KCN-inhibited chloroplasts vary according to the structure of acceptor used. Quinonediimine, but not quinone, electron acceptor activities are inhibited by a variety of uncouplers. Kinetic analysis of this inhibition shows that it is competitive. Low concentrations of aniline also inhibit the activity of C-methylated quinonediimines, but this appears to be due to a chemical reaction between the acceptor and aniline at low pH inside the chloroplast. Light-induced uptake of a quinonediimine, p-phenylenediimine, was shown to occur in a DCMU-sensitive reaction. Methylamine uncoupling inhibits this uptake to the same extent as it inhibits electron flow. Experiments with a lipophobic acceptor, N,N,N',N'-tetramethyl-p-phenylenediimine, indicate that it catalyzes electron flow by the same mechanism as other quinonediimines. A model is proposed to account for quinonediimine-catalyzed electron flow.  相似文献   

8.
Birrell JA  King MS  Hirst J 《FEBS letters》2011,585(14):2318-2322
The flavin mononucleotide in complex I (NADH:ubiquinone oxidoreductase) catalyzes NADH oxidation, O(2) reduction to superoxide, and the reduction of several 'artificial' electron acceptors. Here, we show that the positively-charged electron acceptors paraquat and hexaammineruthenium(III) react with the nucleotide-bound reduced flavin in complex I, by an unusual ternary mechanism. NADH, ATP, ADP and ADP-ribose stimulate the reactions, indicating that the positively-charged acceptors interact with their negatively-charged phosphates. Our mechanism for paraquat reduction defines a new mechanism for superoxide production by complex I (by redox cycling); in contrast to direct O(2) reduction the rate is stimulated, not inhibited, by high NADH concentrations.  相似文献   

9.
The effects of redox potential and electric charge on the rate of electron-transfer reaction by a two-electron process were investigated. For electron donors, beta-NADH, beta-NADPH and alpha-NADH were used; they have similar structures but different charges and different redox potentials. For electron acceptors, the following 5-ethylphenazine derivatives were used: 1-(3-carboxypropyloxy)-5-ethylphenazine, 1-(3-ethoxycarbonylpropyloxy)-5-ethylphenazine, and 1-[N-(2-aminoethyl)carbamoylpropyloxy]-5-ethylphenazine. They have similar structures and different charges. Using these donors and acceptors, the potential and the charge effects were estimated separately. In the potential effect, a linear free energy relationship was observed for the change in the redox potential of the donor with a Br?nsted slope of about unity. On the other hand, the slope for the change in the potential of the acceptor was about 0.5. These results show that the potential effect due to electron donors is different from that due to electron acceptors. A linear relationship was also observed between activation free energy and electrostatic force (or potential). The redox potential effect and the electrostatic effect are independent and additive. New theory for the mechanism of electron-transfer reactions is needed to explain these results.  相似文献   

10.
The location of extracytoplasmic acid phosphatase in haploid, diploid, and polyploid cells ofSaccharomyces cerevisiae was examined by cytochemical electron microscopy. In all cases, in the presence of lead nitrate and low concentrations of glycerophosphate, the reaction product (lead phosphate) was restricted to the periplasmic space. With higher substrate concentrations (which are typical of those previously employed by others) precipitates also appeared on the cell wall surface of some specimens; a result previously reported by three other laboratories. The surface deposits are deemed artifacts from incomplete lead capture under high enzymatic rates of orthophosphate generation. A model system that supports this is presented.  相似文献   

11.
Boubacar AK  Pethe S  Mahy JP  Lederer F 《Biochemistry》2007,46(45):13080-13088
Flavocytochrome b2, a flavohemoprotein, catalyzes the oxidation of lactate at the expense of the physiological acceptor cytochrome c in the yeast mitochondrial intermembrane space. The mechanism of electron transfer from the substrate to monoelectronic acceptors via FMN and heme b2 has been intensively studied over the years. Each prosthetic group is bound to a separate domain, N-terminal for the heme, C-terminal for the flavin. Each domain belongs to a distinct evolutionary family. In particular, the flavodehydrogenase domain is homologous to a number of well-characterized l-2-hydroxy acid-oxidizing enzymes. Among these, some are oxidases for which the oxidative half-reaction produces hydrogen peroxide at the expense of oxygen. For bacterial mandelate dehydrogenase and flavocytochrome b2, in contrast, the oxidative half-reaction requires monoelectronic acceptors. Several crystal structures indicate an identical fold and a highly conserved active site among family members. All these enzymes form anionic semiquinones and bind sulfite, properties generally associated with oxidases, whereas electron transferases are expected to form neutral semiquinones and to yield superoxide anion. Thus, flavocytochrome b2 is a highly unusual dehydrogenase-electron transferase, and one may wonder how its flavin reacts with oxygen. In this work, we show that the separately engineered flavodehydrogenase domain produces superoxide anion in its slow reaction with oxygen. This reaction apparently also takes place in the holoenzyme when oxygen is the sole electron acceptor, because the heme domain autoxidation is also slow; this is not unexpected, in view of the heme domain mobility relative to the tetrameric flavodehydrogenase core (Xia, Z. X., and Mathews, F. S. (1990) J. Mol. Biol. 212, 837-863). Nevertheless, this reaction is so slow that it cannot compete with the normal electron flow in the presence of monoelectronic acceptors, such as ferricyanide and cytochrome c. An inspection of the available structures of family members does not provide a rationale for the difference between the oxidases and the electron transferases.  相似文献   

12.
Light induced damage of the photosynthetic apparatus is an important and highly complex phenomenon, which affects primarily the Photosystem II complex. Here the author summarizes the current state of understanding of the molecular mechanisms, which are involved in the light induced inactivation of Photosystem II electron transport together with the relevant mechanisms of photoprotection. Short wavelength ultraviolet radiation impairs primarily the Mn?Ca catalytic site of the water oxidizing complex with additional effects on the quinone electron acceptors and tyrosine donors of PSII. The main mechanism of photodamage by visible light appears to be mediated by acceptor side modifications, which develop under conditions of excess excitation in which the capacity of light-independent photosynthetic processes limits the utilization of electrons produced in the initial photoreactions. This situation of excess excitation facilitates the reduction of intersystem electron carriers and Photosystem II acceptors, and thereby induces the formation of reactive oxygen species, especially singlet oxygen whose production is sensitized by triplet chlorophyll formation in the reaction center of Photosystem II. The highly reactive singlet oxygen and other reactive oxygen species, such as H?O? and O??, which can also be formed in Photosystem II initiate damage of electron transport components and protein structure. In parallel with the excess excitation dependent mechanism of photodamage inactivation of the Mn?Ca cluster by visible light may also occur, which impairs electron transfer through the Photosystem II complex and initiates further functional and structural damage of the reaction center via formation of highly oxidizing radicals, such as P 680(+) and Tyr-Z(+). However, the available data do not support the hypothesis that the Mn-dependent mechanism would be the exclusive or dominating pathway of photodamage in the visible spectral range. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

13.
An electrometrical technique was used to investigate electron transfer between the terminal iron-sulfur centers F(A)/F(B) and external electron acceptors in photosystem I (PS I) complexes from the cyanobacterium Synechococcus sp. PCC 6301 and from spinach. The increase of the relative contribution of the slow components of the membrane potential decay kinetics in the presence of both native (ferredoxin, flavodoxin) and artificial (methyl viologen) electron acceptors indicate the effective interaction between the terminal 14Fe-4S] cluster and acceptors. The finding that FA fails to donate electrons to flavodoxin in F(B)-less (HgCl2-treated) PS I complexes suggests that F(B) is the direct electron donor to flavodoxin. The lack of additional electrogenicity under conditions of effective electron transfer from the F(B) redox center to soluble acceptors indicates that this reaction is electrically silent.  相似文献   

14.
Light-induced electron transfer reactions in the chlorophyll a/d-binding Photosystem I reaction centre of Acaryochloris marina were investigated in whole cells by pump-probe optical spectroscopy with a temporal resolution of ~5ns at room temperature. It is shown that phyllosemiquinone, the secondary electron transfer acceptor anion, is oxidised with bi-phasic kinetics characterised by lifetimes of 88±6ns and 345±10ns. These lifetimes, particularly the former, are significantly slower than those reported for chlorophyll a-binding Photosystem I, which typically range in the 5-30ns and 200-300ns intervals. The possible mechanism of electron transfer reactions in the chlorophyll a/d-binding Photosystem I and the slower oxidation kinetics of the secondary acceptors are discussed.  相似文献   

15.
This paper points out that the orientations of the porphyrins, bacteriochlorophyll and bacteriopheophytin, in the reaction centers of Rhodopseudomonas viridis, as shown by the new X-ray determined structure, have a peculiar orientation towards each other: electron donors are broadside toward the acceptors and acceptors are edgeon toward donors. Vibronic coupling which is the mechanism of converting free-energy loss in electron transport to vibrational energy is examined as a possible explanation. Preliminary calculations do not support this as an explanation of the orientations but suggest strongly that the non-heme iron atom has the function of promoting vibronic coupling in the electron transfer from bacteriopheophytin to menaquinone. It is further suggested that the system of electron transport from the special pair of bacteriochlorophyll to the bacteriopheophytin is arranged to keep virbonic coupling to a minimum to match the very small electronic free-energy loss in this region.Abbreviations BC Bacteriochlorophyll - BP Bacteriopheophytin - BC2 Bacteriochlorophyll special pair, primary electron donor - Fe Non-heme iron atom - MQ Menaquinone, first quinone acceptor - UQ Ubiquinone, second quinone acceptor  相似文献   

16.
Anaerobic thermophilic degradation of several amino acids was studied in batch cultures using an inoculum from a steady-state semicontinuous enrichment culture. Experiments were done in the presence and absence of methanogenesis and known electron acceptors in the Stickland reaction. Methanogenesis was found to be crucial for the degradation of amino acids known to be oxidatively deaminated (leucine, valine and alanine). Other amino acids (serine, threonine, cysteine and methionine) were degraded under both methanogenic and non-methanogenic conditions. Degradation rates for these four amino acids were 1.3 to 2.2 times higher in cases where methanogenesis was active. The degradation rates of serine, threonine, cysteine and methionine were about twice as high as the rates of leucine, valine and alanine under methanogenic conditions. Inclusion of different electron acceptors, known to work in the Stickland reaction, did not enhance the degradation rates of any amino acid used nor did they alter the degradation patterns. Glycine was oxidatively deaminated to acetate, carbon dioxide, hydrogen and ammonium.  相似文献   

17.
Fructose 1,6-bisphosphatase, in isolated intact chloroplast from spinach leaves, is photoactivated by ferredoxin/thioredoxin system. The mechanism involved is conversion of enzyme disulfide to sulfhydryl groups as the photoactivation is inhibited by sulfhydryl group modifying agents which are able to penetrate the chloroplast envelope. Reduction of ferredoxin on the reducing side of photosystem I is found to be a key event and active electron flow to ferredoxin must be maintained for keeping the enzyme in activated state. DCMU - a classical electron transport chain inhibitor and other exogenously added electron acceptors, which intercept electrons on or before ferredoxin cause deactivation of fructose 1,6-bisphosphatase in light. The rate of deactivation, in dark, is also enhanced by exogenously added electron acceptors and sulfhydryl group modifying agents. The mechanism of regulation of fructose 1,6-bisphosphatase is discussed.  相似文献   

18.
In all organisms the fourth catalytic step of the pyrimidine biosynthesis is driven by the flavoenzyme dihydroorotate dehydrogenase (DHODH, EC 1.3.99.11). Cytosolic DHODH of the established model organism Saccharomyces cerevisiae catalyses the oxidation of dihydroorotate to orotate and the reduction of fumarate to succinate. Here, we investigate the structure and mechanism of DHODH from S. cerevisiae and show that the recombinant ScDHODH exists as a homodimeric enzyme in vitro. Inhibition of ScDHODH by the reaction product was observed and kinetic studies disclosed affinity for orotate (K(ic)=7.7 microM; K(ic) is the competitive inhibition constant). The binding constant for orotate was measured through comparison of UV-visible spectra of the bound and unbound recombinant enzyme. The midpoint reduction potential of DHODH-bound flavine mononucleotide determined from analysis of spectral changes was -242 mV (vs. NHE) under anaerobic conditions. A search for alternative electron acceptors revealed that homologues such as mesaconate can be used as electron acceptors.  相似文献   

19.
The EPR characteristics of Photosystem II electron acceptors are described, in membrane and detergent-treated preparations from a mutant of Chlamydomonas reinhardii lacking Photosystem I and photosynthetic ATPase. The relationship between the quinone-iron and pheophytin acceptors is discussed and a heterogeneity of reaction centres is demonstrated such that only a minority of reaction centres were capable of secondary electron donation at temperatures below 100 K. Only these centres were therefore able to stabilise a reduced acceptor below 100 K. Parallel experiments using a barley mutant (viridis zb63) which also lacks Photosystem I, provide similar results indicating that the C. reinhardii system can provide a general model for the Photosystem II electron acceptor complex. The similarity of the system to that of the purple photosynthetic bacteria is discussed.  相似文献   

20.
Hydrogenases were measured in intact actinorhizal root nodules and from disrupted nodules of Alnus glutinosa, Alnus rhombifolia, Alnus rubra, and Myrica pensylvanica. Whole nodules took up H2 in an O2-dependent reaction. Endophyte preparations oxidized H2 through the oxyhydrogen reaction, but rates were enhanced when hydrogen uptake was coupled to artificial electron acceptors. Oxygen inhibited artifical acceptor-dependent H2 uptake. The hydrogenase system from M. pensylvanica had a different pattern of coupling to various electron acceptors than the hydrogenase systems from the alders; only the bayberry system evolved H2 from reduced viologen dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号