首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Puroindolines (PINs) are the main components of the wheat grain hardness locus (Ha) and have in vitro antimicrobial activity against bacteria and fungi. Here, we examined the effect of variation in PINA and/or PINB content upon Penicillium sp. seed fungal growth inhibition. The Penicillium sp. assays were germination assays performed after incubating seeds in Penicillium sp. contaminated soil. The first set of wheat genotypes consisted of two sets of transgenic isolines created in the varieties ‘Bobwhite’ and ‘Hi‐Line’ having over‐expression of PINA and/or PINB. The second set of genotypes consisted of near‐isogenic lines (NILs) varying for mutations in PINA or PINB created in the varieties ‘Explorer’ and ‘Hank’. After incubation in Penicillium sp.‐infected soil, transgenic wheat seeds over‐expressing PINA in both ‘Hi‐Line’ and ‘Bobwhite’ and both PINs in ‘Hi‐Line’ exhibited significantly reduced fungal infection and increased germination. No significant differences in Penicillium sp. infection or germination rates were observed in seeds of the NILs. The results indicate that puroindolines native role in seeds is to increase seed viability and that when over‐expressed as transgenes, the puroindolines are effective antifungal proteins.  相似文献   

2.
The puroindoline genes (pinA and pinB) are believed to play critical roles in wheat (Triticum aestivum L.) grain texture. Mutations in either gene are associated with hard wheat. No direct evidence exists for the ability of puroindolines to modify cereal grain texture. Interestingly, puroindolines appear to be absent in cereal species outside of the tribe Triticeae, in which the dominant form of grain texture is hard. To assess the ability of the puroindolines to modify cereal grain texture, the puroindolines were introduced into rice (Oryzae sativa L.) under the control of the maize ubiquitin promoter. Textural analysis of transgenic rice seeds indicated that expression of PINA and/or PINB reduced rice grain hardness. After milling, flour prepared from these softer seeds had reduced starch damage and an increased percentage of fine flour particles. Our data support the hypothesis that puroindolines play important roles in controlling wheat grain texture and may be useful in modifying grain texture of other cereals.  相似文献   

3.
Wheat puroindolines enhance fungal disease resistance in transgenic rice   总被引:11,自引:0,他引:11  
Antimicrobial peptides play a role in the immune systems of animals and plants by limiting pathogen infection and growth. The puroindolines, endosperm-specific proteins involved in wheat seed hardness, are small proteins reported to have in vitro antimicrobial properties. Rice, the most widely used cereal crop worldwide, normally does not contain puroindolines. Transgenic rice plants that constitutively express the puroindoline genes pinA and/or pinB throughout the plants were produced. PIN extracts of leaves from the transgenic plants reduced in vitro growth of Magnaporthe grisea and Rhizoctonia solani, two major fungal pathogens of rice, by 35 to 50%. Transgenic rice expressing pinA and/or pinB showed significantly increased tolerance to M. grisea (rice blast), with a 29 to 54% reduction in symptoms, and R. solani (sheath blight), with an 11 to 22% reduction in symptoms. Puroindolines are effective in vivo in antifungal proteins and could be valuable new tools in the control of a wide range of fungal pathogens of crop plants.  相似文献   

4.
5.
The texture of maize ( Zea mays L.) seeds is important to seed processing properties, and soft dent maize is preferred for both wet-milling and livestock feed applications. The puroindoline genes ( Pina and Pinb ) are the functional components of the wheat ( Triticum aestivum L.) Hardness locus and together function to create soft grain texture in wheat. The PINs (PINA and PINB) are believed to act by binding to lipids on the surface of starch granules, preventing tight adhesion between starch granules and the surrounding protein matrix during seed maturation. Here, maize kernel structure and wet milling properties were successfully modified by the endosperm-specific expression of wheat Pins ( Pina and Pinb ). Pins were introduced into maize under the control of a maize γ- Zein promoter. Three Pina/Pinb expression positive transgenic lines were evaluated over two growing seasons. Textural analysis of the maize seeds indicated that the expression of PINs decreased adhesion between starch and protein matrix and reduced maize grain hardness significantly. Reduction in pressure required to fracture kernels ranged from 15.65% to 36.86% compared with control seeds. Further, the PINs transgenic maize seeds had increased levels of extractable starch as characterized by a small scale wet milling method. Starch yield was increased by 4.86% on average without negatively impacting starch purity. The development of softer maize hybrids with higher starch extractability would be of value to maize processors.  相似文献   

6.
A chitinase gene from rice (Rchit) was introduced into three varieties of peanut through Agrobacterium-mediated genetic transformation resulting in 30 transgenic events harboring the Rchit gene. Stable integration and expression of the transgenes were confirmed using PCR, RT-PCR and Southern blot analysis. Progeny derived from selfing of the primary transgenic events revealed a Mendelian inheritance pattern (3:1) for the transgenes. The chitinase activity in the leaves of the transgenic events was 2 to 14-fold greater than that in the non-transformed control plants. Seeds of most transgenic events showed 0–10 % A. flavus infection during in vitro seed inoculation bioassays. Transgenic peanut plants evaluated for resistance against late leaf spot (LLS) and rust using detached leaf assays showed longer incubation, latent period and lower infection frequencies when compared to their non-transformed counterparts. A significant negative correlation existed between the chitinase activity and the frequency of infection to the three tested pathogens. Three progenies from two transgenic events displayed significantly higher disease resistance for LLS, rust and A. flavus infection and are being advanced for further evaluations under confined field conditions to confirm as sources to develop peanut varieties with enhanced resistance to these fungal pathogens.  相似文献   

7.
The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad‐spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field‐grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome‐encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up‐regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress‐response genes were up‐regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad‐spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat.  相似文献   

8.
9.
Abstract:  A convertible glasshouse was established to study annual transgenic plants under near-field environmental conditions while simultaneously ensuring a high level of biological containment. This system can provide a useful step in the assessment of transgenic plants prior to open-field experiments. Two transgenic wheat lines (cv. Bobwhite) were investigated and compared with their corresponding non-transformed wildtypes with respect to plant performance, expression of the transgenic trait and interactions with antagonists. The first line expressed snowdrop lectin [ Galanthus nivalis agglutinin (GNA)] for enhanced resistance to aphids, and the second one overexpressed the endogenous Lr10 gene to enhance resistance to leaf rust. Interestingly, 1000-kernel weight of Lr10 -transgenic plants was significantly reduced, indicating that the overexpression of the Lr10 gene caused a significant fitness cost for the plant. GNA-transgenic plants expressed the lectin at levels too low to affect the target aphids. A detached leaf bioassay with Lr10 -transgenic plants revealed an increased resistance to leaf rust. No differences in the performance of aphids or cereal leaf beetles on transgenic and non-transformed plants were recorded in the convertible glasshouse and in complementary glasshouse studies. Similarly, infection levels with powdery mildew did not differ between transgenic and non-transformed plants but Bobwhite plants were significantly more infected when compared with conventional Swiss spring wheat cultivars. Overall, the assessment revealed that for the plants investigated here, their genetic background had a stronger impact on the performance of a plant and its interactions with insect herbivores and pathogens than the expression of the transgene.  相似文献   

10.
Kernel hardness that is conditioned by puroindoline genes has a profound effect on milling, baking and end-use quality of bread wheat. In this study, 219 landraces and 166 historical cultivars from China and 12 introduced wheats were investigated for their kernel hardness and puroindoline alleles, using molecular and biochemical markers. The results indicated that frequencies of soft, mixed and hard genotypes were 42.7, 24.3, and 33.0%, respectively, in Chinese landraces and 45.2, 13.9, and 40.9% in historical cultivars. The frequencies of PINA null, Pinb-D1b and Pinb-D1p genotypes were 43.8, 12.3, and 39.7%, respectively, in hard wheat of landraces, while 48.5, 36.8, and 14.7%, respectively, in historical hard wheats. A new Pinb-D1 allele, designated Pinb-D1t, was identified in two landraces, Guangtouxianmai and Hongmai from the Guizhou province, with the characterization of a glycine to arginine substitution at position 47 in the coding region of Pinb gene. Surprisingly, a new Pina-D1 allele, designated Pina-D1m, was detected in the landrace Hongheshang, from the Jiangsu province, with the characterization of a proline to serine substitution at position 35 in the coding region of Pina gene; it was the first novel mutation found in bread wheat, resulting in a hard endosperm with PINA expression. Among the PINA null genotypes, an allele designed as Pina-D1l, was detected in five landraces with a cytosine deletion at position 265 in Pina locus; while another novel Pina-D1 allele, designed as Pina-D1n, was identified in six landraces, with the characterization of an amino acid change from tryptophan-43 to a ‘stop’ codon in the coding region of Pina gene. The study of puroindoline polymorphism in Chinese wheat germplasm could provide useful information for the further understanding of the molecular basis of kernel hardness in bread wheat.  相似文献   

11.
12.
The puroindoline proteins (PINA and PINB) of wheat display lipid-binding properties which affect the grain texture, a critical parameter for wheat quality. Interestingly, the same proteins also display antibacterial and antifungal properties, attributed mainly to their Tryptophan-rich domain (TRD). Synthetic peptides based on this domain also display selectivity towards bacterial and fungal cells and do not cause haemolysis of mammalian cells. However, the mechanisms of these activities are unclear, thus limiting our understanding of the in vivo roles of PINs and development of novel applications. This study investigated the mechanisms of antimicrobial activities of synthetic peptides based on the TRD of the PINA and PINB proteins. Calcein dye leakage tests and transmission electron microscopy showed that the peptides PuroA, Pina-M and Pina-W→F selectively permeabilised the large unilamellar vesicles (LUVs) made with negatively charged phospholipids mimicking bacterial membranes, but were ineffective against LUVs made with zwitterionic phospholipids mimicking eukaryotic membranes. Propidium iodide fluorescence tests of yeast (Saccharomyces cerevisiae) cells showed the peptides were able to cause loss of membrane integrity, PuroA and Pina-M being more efficient. Scanning electron micrographs of PINA-based peptide treated yeast cells showed the formation of pits or pores in cell membranes and release of cellular contents. Gel retardation assays indicated the peptides were able to bind to DNA in vitro, and the induction of filamental growth of E. coli cells indicated in vivo inhibition of DNA synthesis. Together, the results strongly suggest that the PIN-based peptides exert their antimicrobial effects by pore formation in the cell membrane, likely by a carpet-like mechanism, followed by intracellular mechanisms of activity.  相似文献   

13.
14.
A field trial of 15 transgenic birch lines expressing a sugar beet chitinase IV gene and the corresponding controls was established in southern Finland to study the effects of the level of sugar beet chitinase IV expression on birch resistance to fungal diseases. The symptoms caused by natural infections of two fungal pathogens, Pyrenopeziza betulicola (leaf spot disease) and Melampsoridium betulinum (birch rust), were analysed in the field during a period of 3 years. The lines that had shown a high level of sugar beet chitinase IV mRNA accumulation in the greenhouse also showed high sugar beet chitinase IV expression after 3 years in the field. The level of sugar beet chitinase IV expression did not significantly improve the resistance of transgenic birches to leaf spot disease. Instead, some transgenic lines were significantly more susceptible to leaf spot than the controls. The level of sugar beet chitinase IV expression did have an improving effect on most parameters of birch rust; the groups of lines showing high or intermediate transgene expression were more resistant to birch rust than those showing low expression. This result indicates that the tested transformation may provide a tool for increasing the resistance of silver birch to birch rust.  相似文献   

15.
Plant oil content and composition improvement is a major goal of plant breeding and biotechnology. The Puroindoline a and b (PINA and PINB) proteins together control whether wheat seeds are soft or hard textured and share a similar structure to that of plant non-specific lipid-transfer proteins. Here we transformed corn (Zea mays L.) with the wheat (Triticum aestivum L.) puroindoline genes (Pina and Pinb) to assess their effects upon seed oil content and quality. Pina and Pinb coding sequences were introduced into corn under the control of a corn Ubiquitin promoter. Three Pina/Pinb expression positive transgenic events were evaluated over two growing seasons. The results showed that Pin expression increased germ size significantly without negatively impacting seed size. Germ yield increased 33.8% while total seed oil content was increased by 25.23%. Seed oil content increases were primarily the result of increased germ size. This work indicates that higher oil content corn hybrids having increased food or feed value could be produced via puroindoline expression.  相似文献   

16.
Durum wheat is the second-most widely grown wheat species, and is primarily used in the production of pasta and couscous. The grain utilization of durum wheat is partly related to its very hard kernel texture because of the lack of the D genome and consequentially the Puroindoline genes. Our previous study reported the transformation of durum wheat with the Puroindoline a (Pina) gene. Here, we characterized the transgenic durum wheat lines expressing the Pina gene, and studied the effects of PINA on grain texture and other kernel characteristics. SDS-PAGE and Western blotting results demonstrated that starch-bound PINA levels of Pina-overexpressing lines were lower than that of Pina-positive control, common wheat cv. Chinese Spring, suggesting a weak association of PINA protein with starch granules in the absence of Pinb. Grain hardness analysis and flour milling tests indicated that the overexpression of PINA resulted in decreased grain hardness and increased flour yield in transgenic durum wheat lines. The agronomic performance of the transgenic and control lines was also examined and it was found that no significant differences in measured traits were observed between Pina-overexpressing and control lines in the 2-year field trials. Since grain hardness strongly affects milling and end-use qualities, the development of medium–hard-textured durum wheat lines is not only of significance for our knowledge of grain hardness and Puroindolines, but also has practical implications for plant breeders and food technologists for the expansion of utilization of durum wheat.  相似文献   

17.
Puroindoline a and b (Pina and Pinb), together make up the functional components of the wheat grain hardness locus (Ha) and have antimicrobial properties. The antifungal activity of puroindoline proteins, PINA and PINB, has been demonstrated in vitro and in vivo. In this study, Pina and Pinb were introduced into corn under the control of a corn Ubiquitin promoter. Two Pina/Pinb expression–positive transgenic events were evaluated for resistance to Cochliobolus heterostrophus, the corn southern leaf blight (SLB) pathogen. Transgenic corn expressing Pins showed significantly increased tolerance to C. heterostrophus, averaging 42.1% reduction in symptoms. Pins are effective in vivo as antifungal proteins and could be valuable tools in corn SLB control.  相似文献   

18.
Wheat leaf rust is caused by the fungus Puccinia triticina. The genetics of resistance follows the gene-for-gene hypothesis, and thus the presence or absence of a single host resistance gene renders a plant resistant or susceptible to a leaf rust race bearing the corresponding avirulence gene. To investigate some of the changes in the proteomes of both host and pathogen during disease development, a susceptible line of wheat infected with a virulent race of leaf rust were compared to mock-inoculated wheat using 2-DE (with IEF pH 4-8) and MS. Up-regulated protein spots were excised and analyzed by MALDI-QqTOF MS/MS, followed by cross-species protein identification. Where possible MS/MS spectra were matched to homologous proteins in the NCBI database or to fungal ESTs encoding putative proteins. Searching was done using the MASCOT search engine. Remaining unmatched spectra were then sequenced de novo and queried against the NCBInr database using the BLAST and MS BLAST tools. A total of 32 consistently up-regulated proteins were examined from the gels representing the 9-day post-infection proteome in susceptible plants. Of these 7 are host proteins, 22 are fungal proteins of known or hypothetical function and 3 are unknown proteins of putative fungal origin.  相似文献   

19.
Cultivated barley, Hordeum vulgare L., is considered to be a nonhost or intermediate host species for the wheat leaf rust fungus Puccinia triticina. Here, we have investigated, at the microscopic and molecular levels, the reaction of barley cultivars to wheat leaf rust infection. In the nonhost resistant cultivar Cebada Capa, abortion of fungal growth occurred at both pre- and posthaustorial stages, suggesting that defense genes are expressed throughout the development of the inappropriate fungus during the nonhost resistance reaction. In the two barley lines L94 and Bowman, a low level of prehaustorial resistance to P. triticina was observed and susceptibility was comparable to that of wheat control plants. Suppression subtractive hybridization was used to identify genes that are differentially expressed during the nonhost resistance reaction in Cebada Capa as well as during the successful establishment of the inappropriate wheat leaf rust fungus in L94. Northern analysis indicated that two candidate genes, including a barley ortholog of the rice resistance gene Xa21, are putatively involved in nonhost and non-race-specific resistance reactions. In addition, a new gene that is specifically induced during the successful development of the inappropriate fungus P. triticina in barley has been identified.  相似文献   

20.
When present, stilbene synthase leads to the production of resveratrol compounds, which are major components of the phytoalexin response against fungal pathogens of the plant and are highly bioactive substances of pharmaceutical interest. White poplar (Populus alba L.) was transformed with a construct containing a cDNA insert encoding stilbene synthase from grapevine (Vitis vinifera L.), under the control of the cauliflower mosaic virus (CaMV) 35S promoter, and a chimeric kanamycin resistance gene. Southern blot hybridization analysis demonstrated the presence and integration of exogenous DNA sequences in the poplar genome. Expression of the stilbene synthase-encoding gene in different transgenic lines was confirmed by Western blot and Northern analyses. Compared to the controls, in the transgenic plants two new compounds were detected and were identified as the trans- and cis-isomers of resveratrol-3-glucoside (piceid) by high-pressure liquid chromatography (HPLC), UV spectrophotometry, electrospray mass spectrometry (HPLC-ESI-MS) and enzymatic hydrolysis. Since poplar is a good biomass producer and piceids are accumulated in substantial amounts (up to 615.2 microg/g leaf fresh weight), the transgenic plants represent a potential alternative source for the production of these compounds with high pharmacological value. Despite the presence of piceid, in our experimental conditions no increased resistance against the pathogen Melampsora pulcherrima, which causes rust disease, was observed when in vitro bioassays were performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号