首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The silent mating-type loci HML and HMR of Saccharomyces cerevisiae contain mating-type information that is permanently repressed. This silencing is mediated by flanking sequence elements, the E- and I-silencers. They contain combinations of binding sites for the proteins Rap1, Abf1 and Sum1 as well as for the origin recognition complex (ORC). Together, they recruit other silencing factors, foremost the repressive Sir2/Sir3/Sir4 complex, to establish heterochromatin-like structures at the HM loci. However, the HM silencers exhibit considerable functional redundancy, which has hampered the identification of further silencing factors. In this study, we constructed a synthetic HML-E silencer (HML-SS ΔI) that lacked this redundancy. It consisted solely of Rap1 and ORC-binding sites and the D2 element, a Sum1-binding site. All three elements were crucial for minimal HML silencing, and mutations in these elements led to a loss of Sir3 recruitment. The silencer was sensitive to a mutation in RAP1, rap1-12, but less sensitive to orc mutations or sum1Δ. Moreover, deletions of SIR1 and DOT1 lead to complete derepression of the HML-SS ΔI silencer. This fully functional, minimal HML-E silencer will therefore be useful to identify novel factors involved in HML silencing.  相似文献   

3.
A dominant, single nuclear gene mutation, CSE1, caused inositol auxotrophy in yeast cells. The inositol requirement was marked when choline was present in the medium. Inositol-1-phosphate synthase, the regulatory enzyme of inositol synthesis, is repressed by inositol, or more profoundly by a combination of inositol and choline in the wild type. In CSE1, the level of inositol-1-phosphate synthase was low and was greatly repressed on the addition of choline alone. In accordance with this, INO1 mRNA encoding the enzyme was low even under the depressed conditions and was profoundly decreased by choline in CSE1. But in the wild type, the addition of choline alone had little effect. An INO1-lacZ fusion was constructed and the control of the INO1 promoter in CSE1 was studied. lacZ expression was repressed not only by inositol, but also by choline in CSE1, whereas it was repressed by inositol, but only slightly by choline in the wild type. CSE1 was unlinked to the INO1 structural gene. Thus CSE1 was thought to be a regulatory mutation. Furthermore, when the CDP-choline pathway was mutationally blocked, choline did not affect INO1 expression, indicating that the metabolism of choline via the CDP-choline pathway is required for INO1 repression.  相似文献   

4.
5.
Genetic and biochemical evidence implicates chromatin structure in the silencing of the two quiescent mating-type loci near the telomeres of chromosome III in yeast. With high-resolution micrococcal nuclease mapping, we show that the HMRa locus has 12 precisely positioned nucleosomes spanning the distance between the E and I silencer elements. The nucleosomes are arranged in pairs with very short linkers; the pairs are separated from one another by longer linkers of approximately 20 bp. Both the basic amino-terminal region of histone H4 and the silent information regulator protein Sir3p are necessary for the organized repressive chromatin structure of the silent locus. Compared to HMRa, only small differences in the availability of the TATA box are present for the promoter in the cassette at the active MATa locus. Features of the chromatin structure of this silent locus compared to the previously studied HMLalpha locus suggest differences in the mechanisms of silencing and may relate to donor selection during mating-type interconversion.  相似文献   

6.
We have detected two site-specific endonucleases in strains of Saccharomyces cerevisiae. One endonuclease, which we call YZ endo, is present only in yeast strains that are undergoing mating-type interconversion. The site at which YZ endo cleaves corresponds to the in vivo double-strand break occurring at the mating-type locus in yeast undergoing mating-type interconversion. YZ endo generates a site-specific double-strand break having 4-base 3' extensions terminating in 3' hydroxyl groups. The site of cleavage occurs in the Z1 region near the YZ junction of the mating-type locus. Mutant mating-type loci known to decrease the frequency of mating-type interconversion are correspondingly poor substrates for YZ endo in vitro. In vitro analysis of a number of such altered recognition sites has delimited the sequences required for cleavage. The molecular genetics of mating-type interconversion is discussed in the context of this endonucleolytic activity. The second endonuclease, which we refer to as Sce II, is present in all strains of S. cerevisiae we have examined. The cleavage site of Sce II has been determined and proves to be unrelated to the cleavage site of YZ endo.  相似文献   

7.
《The Journal of cell biology》1983,96(6):1592-1600
Two mutants of Saccharomyces cerevisiae have been isolated from normal haploid MAT alpha strains and characterized as having temperature- sensitive, pleiotropic phenotypes for functions associated with mating. At the permissive temperature, 23 degrees C, they were found to behave as normal MAT alpha haploids with respect to mating efficiency, sporulation in diploids formed with MAT a strains, secretion of alpha- factor, and failure to secrete the MATa-specific products, a-factor and Barrier. At higher temperatures they were found to decline in mating and sporulation efficiency and to express the a-specific functions. Genetic analysis established that one of these mutants, PE34, carries a temperature-sensitive allele of the MAT alpha 2 gene and that the other, PD7, carries a temperature-sensitive allele of the TUP1 gene.  相似文献   

8.
《Gene》1996,169(1):115-118
We have isolated a cDNA from the protozoan parasite Leishmania major (Lm) that encodes a protein homologous to the Saccharomyces cerevisiae and Kluyveromyces marxianus silent information regulator 2 (SIR2) proteins. The deduced Lm SIR2-related protein (termed LmSIR2rp) consists of 381 amino acids that share 40.5% identity with yeast SIR2, increasing to 60% when substitutions are included. Moreover, the LmSIR2rp aa sequence contains a single potential zinc-binding domain with a CysXaa2CysXaa20CysXaa2Cys motif, and its C-terminal part is rich in Ser (16 Ser residues over 40 aa) which constitute potential sites for phosphorylation. The characterization of a novel Lm gene product which shows considerable similarity to a yeast mating-type regulatory protein provides a new tool to investigate the parasite differentiation control mechanisms and gene expression regulation  相似文献   

9.
We sequenced two alleles of the MATa locus of Saccharomyces cerevisiae that reduce homothallic switching and confer viability to HO rad52 strains. Both the MATa-stk (J. E. Haber, W. T. Savage, S. M. Raposa, B. Weiffenbach, and L. B. Rowe, Proc. Natl. Acad. Sci. USA 77:2824-2828, 1980) and MATa-survivor (R. E. Malone and D. Hyman, Curr. Genet. 7:439-447, 1983) alleles result from a T----A base change at position Z11 of the MAT locus. These strains also contain identical base substitutions at HMRa, so that the mutation is reintroduced when MAT alpha switches to MATa. Mating-type switching in a MATa-stk strain relative to a MATa Z11T strain is reduced at least 50-fold but can be increased by expression of HO from a galactose-inducible promoter. We confirmed by Southern analysis that the Z11A mutation reduced the efficiency of double-strand break formation compared with the Z11T variant; the reduction was more severe in MAT alpha than in MATa. In MAT alpha, the Z11A mutation also creates a mat alpha 1 (sterile) mutation that distinguishes switches of MATa-stk to either MAT alpha or mat alpha 1-stk. Pedigree analysis of cells induced to switch in G1 showed that MATa-stk switched frequently (23% of the time) to produce one mat alpha 1-stk and one MAT alpha progeny. This postswitching segregation suggests that Z11 was often present in heteroduplex DNA that was not mismatch repaired. When mismatch repair was prevented by deletion of the PMS1 gene, there was an increase in the proportion of mat alpha 1-stk/MAT alpha sectors (59%) and in pairs of switched cells that both retained the stk mutation (27%). We conclude that at least one strand of DNA only 4 bp from the HO cut site is not degraded in most of the gene conversion events that accompany MAT switching.  相似文献   

10.
In the budding yeast Saccharomyces cerevisiae, heterochromatic gene silencing has been found within HMR and HML silent mating type loci, the telomeres, and the rRNA-encoding DNA. There may be boundary elements that regulate the spread of silencing to protect genes adjacent to silenced domains from this epigenetic repressive effect. Many assays show that specific DNA regulatory elements separate a euchromatic locus from a neighboring heterochromatic domain and thereby function as a boundary. Alternatively, DNA-independent mechanisms such as competition between acetylated and deacetylated histones are also reported to contribute to gene insulation. However, the mechanism by which boundaries are formed is not clear. Here, the characteristics and functions of boundaries at silenced domains in S. cerevisiae are discussed.  相似文献   

11.
The concept that mutations cause aging phenotypes could not be directly tested previously due to inability to identify age‐related mutations in somatic cells and determine their impact on organismal aging. Here, we subjected Saccharomyces cerevisiae to multiple rounds of replicative aging and assessed de novo mutations in daughters of mothers of different age. Mutations did increase with age, but their low numbers, < 1 per lifespan, excluded their causal role in aging. Structural genome changes also had no role. A mutant lacking thiol peroxidases had the mutation rate well above that of wild‐type cells, but this did not correspond to the aging pattern, as old wild‐type cells with few or no mutations were dying, whereas young mutant cells with many more mutations continued dividing. In addition, wild‐type cells lost mitochondrial DNA during aging, whereas shorter‐lived mutant cells preserved it, excluding a causal role of mitochondrial mutations in aging. Thus, DNA mutations do not cause aging in yeast. These findings may apply to other damage types, suggesting a causal role of cumulative damage, as opposed to individual damage types, in organismal aging.  相似文献   

12.
Adaptive mutation is a generic term for processes that allow individual cells of nonproliferating cell populations to acquire advantageous mutations and thereby to overcome the strong selective pressure of proliferation-limiting environmental conditions. Prerequisites for an occurrence of adaptive mutation are that the selective conditions are nonlethal and that a restart of proliferation may be accomplished by some genetic change in principle. The importance of adaptive mutation is derived from the assumption that it may, on the one hand, result in an accelerated evolution of microorganisms and, on the other, in multicellular organisms may contribute to a breakout of somatic cells from negative growth regulation, i.e., to cancerogenesis. Most information on adaptive mutation in eukaryotes has been gained with the budding yeast Saccharomyces cerevisiae. This review focuses comprehensively on adaptive mutation in this organism and summarizes our current understanding of this issue.  相似文献   

13.
Haber JE  Garvik B 《Genetics》1977,87(1):33-50
Homothallic strains of Saccharomyes cerevisiae are able to switch efficiently from one mating genotype to another. From a single haploid spore arise both a and mating type cells, which then self-mate to produce a colony consisting almost exclusively of nonmating a/ diploid cells. We have isolated a mutant homothallic strain that gives rise to colonies that show bisexual mating behavior. The mating reaction is always asymmetric, that is, in some colonies a mating is much stronger than mating, while others show greater than a mating.-This mating phenotype arises from the presence of three cell types in a colony: some a/ nonmating diploids and an unequal number of a and haploid cells. The predominant haploid type is that of the original cell that gives rise to the colony. This mixture of cell types arises from a very reduced efficiency of homothallic mating-type interconversions in the mutant strain.-The mutation, designated switch (swi1-1), behaves as a single genetic locus. The mutation is centromere linked, but not linked to the mating type locus or to any of the homothallism genes: HO, HMa and HM. The switch mutation does not affect the efficiency of self-mating, but rather directly affects the frequency of interconversion of mating types.  相似文献   

14.
15.
16.
Yeast autonomously replicating sequence (ARS) plasmids exhibit an unusual segregation pattern during mitosis. While the nucleus divides equally into mother and daughter cells, all copies of the ARS plasmid will often remain in the mother cell. A screen was designed to isolate mutations that suppress this segregation bias. A plasmid with a weak ARS (wARS) that displayed an extremely high segregation bias was constructed. When cells were grown under selection for the wARS plasmid, the resulting colonies grew slowly and had abnormal morphology. A spontaneous recessive mutation that restored normal colony morphology was identified. This mutation suppressed plasmid segregation bias, as indicated by the increased stability of the wARS plasmid in the mutant cells even though the plasmid was present at a lower copy number. An ARS1 plasmid was also more stable in mutant cells than in wild-type cells. The wild-type allele for this mutant gene was cloned and identified as POL delta (CDC2). This gene encodes DNA polymerase delta, which is essential for DNA replication. These results indicate that DNA polymerase delta plays some role in causing the segregation bias of ARS plasmids.  相似文献   

17.
18.
The cys2-1 mutation of Saccharomyces cerevisiae was originally thought to confer cysteine dependence through a serine O-acetyltransferase deficiency. In this study, we show that cys2-1 strains lack not only serine O-acetyltransferase but also cystathionine beta-synthase. However, a prototrophic strain was found to be serine O-acetyltransferase deficient because of a mutation allelic to cys2-1. Moreover, revertants obtained from cys2-1 strains had serine O-acetyltransferase but not cystathionine beta-synthase, whereas transformants obtained by treating a cys2-1 strain with an S. cerevisiae genomic library had cystathionine beta-synthase but not serine O-acetyltransferase. From these observations, we conclude that cys2-1 (serine O-acetyltransferase deficiency) accompanies a very closely linked mutation that causes cystathionine beta-synthase deficiency and that these mutations together confer cysteine dependence. This newly identified mutation is named cys4-1. These results not only support our previous hypothesis that S. cerevisiae has two functional cysteine biosynthetic pathways but also reveal an interesting gene arrangement of the cysteine biosynthetic system.  相似文献   

19.
A mutant allele of RAS1 that dominantly interferes with the wild-type Ras function in the yeast Saccharomyces cerevisiae was discovered during screening of mutants that suppress an ira2 disruption mutation. A single amino acid substitution, serine for glycine at position 22, was found to cause the mutant phenotype. The inhibitory effect of the RAS1 Ser22 gene could be overcome either by overexpression of CDC25 or by the ira2 disruption mutation. These results suggest that the RAS1Ser22 gene product interferes with the normal interaction of Ras with Cdc25 by forming a dead-end complex between Ras1Ser22 and Cdc25 proteins.  相似文献   

20.
In the yeast Saccharomyces cerevisiae, the activation of adenylate cyclase requires the products of the RAS genes and of CDC25. We isolated several dominant extragenic suppressors of the yeast cdc25 mutation. They did not suppress a thermosensitive allele of the adenylate cyclase gene (CDC35). One of these suppressors was a mutated RAS2 gene in which the transition C/G----T/A at position 455 resulted in replacement of threonine 152 by isoleucine in the protein. The same mutation in a v-Ha-ras gene reduces the affinity of p21 for guanine nucleotides (L.A. Feig, B. Pan, T.M. Roberts, and G.M. Cooper, Proc. Natl. Acad. Sci. USA 83:4607-4611, 1986). These results support a model in which the CDC25 gene product is the GDP-GTP exchange factor regulating the activity of the RAS gene product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号