首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paclobutrazol [(2RS,3RS)-1-(4-chlorophenyl)methyl-4,4-dimethyl-2-(1h-1,2,4-trizol-1-yl)penten-3-ol] effectively decreased vegetative growth of rice (Oryza sativa L.) seedlings and increased the chlorophyll content. The number of veins in a leaf, the calculated number of stomata per leaf, and the length of guard cells were not altered by the paclobutrazol treatment, suggesting an effect on cell elongation. The allocation pattern of carbohydrates was changed by either gibberellin (GA) or paclobutrazol treatment. GA3 induced more shoot growth and less accumulation of starch than the control and paclobutrazol-treated seedlings. Photosynthetic ability was not affected by either paclobutrazol or GA3 treatment. Paclobutrazol-treated plants allocated a smaller amount of photosynthates for vegetative shoot growth and stored more as starch in the crowns than the control and GA3-treated plants. The same starch degrading activity in the crown tissue of paclobutrazol-treated seedlings as in control plants suggests that the accumulated starch is utilized in a normal activity for growth including leaf emergence, tiller formation, and root production, resulting in improved seedling quality. Received May 30, 1996; accepted December 10, 1996  相似文献   

2.
The physiologic effect of gibberellins (GA) in seed development is poorly understood. We examined the effect of gibberellic acid (GA3) on growth, protein secretion, and starch accumulation in cultured maize (Zea mays L.) endosperm suspension cells. GA3 (5 and 30 μm) increased the fresh weight, dry weight, and protein content of the cultured cells, but the effect of GA3 at 50 μm was not significantly different. However, the protein content in the culture medium was increased by these three concentrations of GA3. The effect of GA3 on the amount of cellular structural polysaccharides was not significant, but GA3 had a dramatic effect on the starch content. At 5 μm, GA3 caused an increase in the starch content, but at 50 μm the starch accumulation was reduced. Chlorocholine chloride (CCC), an inhibitor of GA biosynthesis, significantly increased the starch content and decreased the structural polysaccharide content of the cultured cells. The effects of CCC at 500 μm on the starch and polysaccharide content were partially reversed by 5 μm GA3 applied exogenously. Based on these results we suggest that GA does not favor starch accumulation in the cell cultures and that the addition of lower concentrations of GA3 in the medium may provide an improved balance among the endogenous GA in the cultured cells. Received October 31, 1995; accepted March 25, 1997  相似文献   

3.
The Drosophila fat body protein 2 gene (Fbp2) is an ancient duplication of the alcohol dehydrogenase gene (Adh) which encodes a protein that differs substantially from ADH in its methionine content. In D. melanogaster, there is one methionine in ADH, while there are 51 (20% of all amino acids) in FBP2. Methionine is involved in 46% of amino acid replacements when Fbp2 DNA sequences are compared between D. melanogaster and D. pseudoobscura. Methionine accumulation does not affect conserved residues of the ADH-ADHr-FBP2 multigene family. The multigene family has evolved by replacement of mildly hydrophobic amino acids by methionine with no apparent reversion. Its short-term evolution was compared between two Drosophila species, while its long-term evolution was compared between two genera belonging respectively to acalyptrate and calyptrate Diptera, Drosophila and Sarcophaga. The pattern of nucleotide substitution was consistent with an independent accumulation of methionines at the Fbp2 locus in each lineage. Under a steady-state model, the rate of methionine accumulation was constant in the lineage leading to Drosophila, and was twice as fast as that in the calyptrate lineage. Substitution rates were consistent with a slight positive selective advantage for each methionine change in about one-half of amino acid sites in Drosophila. This shows that selection can potentially account for a large proportion of amino acid replacements in the molecular evolution of proteins. Received: 12 December 1994 / Accepted: 15 April 1996  相似文献   

4.
Triazole growth retardant chemicals may inhibit stem elongation of woody ornamental species for several years after application. Potted plants of large-leaf Rhododendron catawbiense and Kalmia latifolia were treated with a single spray application of paclobutrazol or uniconazole in the 2nd year from propagation. They were transplanted into the field the next spring. The elongation of stems was measured in the year of application and in the next 2–4 years. Treatments with a wide range of doses were applied in 1991, 1992, or 1995. For all except the most dilute applications, stem elongation was retarded in the year after application. At the highest doses, stem growth was inhibited for 2 years after application. The results were fit to a model of growth regulator action which assumed that stem elongation was inversely related to the amount of growth regulator applied. For paclobutrazol, the dose per plant that inhibited stem elongation half as much as a saturating dose was tenfold that for uniconazole, about 0.5 and 0.05 mg, respectively. For both chemicals, the dose-response coefficient decreased exponentially with time after application, with an exponential time constant of about 2 year−1. A dose of growth regulator which reduced stem elongation by half immediately after application would only inhibit 12% of stem elongation the next year. However, a tenfold greater dose would result in less than half the stem elongation of untreated plants in the next year. Received February 28, 1997; accepted July 8, 1997  相似文献   

5.
Effects of methyl jasmonate (JA-Me) on anthocyanin accumulation, ethylene production, and CO2 evolution in uncooled and cooled tulips (Tulipa gesneriana L. cvs. Apeldoorn and Gudoshnik) were studied. JA-Me stimulated anthocyanin accumulation in stems and leaves from uncooled and cooled bulbs of both cultivars. The highest level of anthocyanin accumulation was observed in leaves from cooled bulbs treated with 200 μL/liter JA-Me. In sprouting bulbs treated with 100 μL/liter and higher concentrations of JA-Me, the ethylene production began to increase at 3 days after treatment, being extremely greater in uncooled bulbs than in cooled ones. JA-Me also stimulated CO2 evolution in both cultivars, depending on its concentrations. CO2 evolution in sprouting bulbs was not affected by cooling treatment. These results suggest that anthocyanin accumulation by JA-Me in tulip leaves is not related to ethylene production stimulated by JA-Me. Received October 10, 1997; accepted November 17, 1997  相似文献   

6.
We examined the effects of a sulfonylurea herbicide, chlorsulfuron, which is known as a potent inhibitor of plant cell division, on morphogenetic cell division and disorganized cell division using the culture system of multiple shoot primordia and callus of Passiflora edulis. The multiple shoot primordia tissue treated with chlorsulfuron failed to achieve shoot morphogenesis, and a large part of the tissue was necrotized during the posttreatment culture, even when it was washed and transferred to chlorsulfuron-free medium. The inhibition of Passiflora shoot morphogenesis by chlorsulfuron was not reversed by the simultaneous addition of branched amino acids, which are known to reverse the inhibitory effect of chlorsulfuron. In contrast, the same treatment of chlorsulfuron on the callus did not kill the cells, although the growth resumption was retarded by a prolonged lag period. The addition of branched amino acids enhanced the recovery growth of the chlorsulfuron-treated callus. These results suggest that the inhibition of disorganized cell division (callus growth) by chlorsulfuron is reversible, whereas morphogenetic cell division (shoot morphogenesis), which is under complex regulation, is inhibited irreversibly by chlorsulfuron. Qualitative differences between morphogenetic cell division and disordered simple proliferative cell division are discussed. Received November 17, 1997; accepted June 4, 1998  相似文献   

7.
This paper studies the influence of the 7-oxalactone type of brassinosteroids (BRs) and 6-ketone upon the biological activity of the alga Chlorella vulgaris (Chlorophyceae). The results of the study indicate significant differences in the growth and metabolism of C. vulgaris cells caused by the different chemical structures of the BRs used. The most significant differences in the stimulation of the growth of the biomass and metabolites contained in it were caused by structural differences in the B ring of BRs. It was found that in C. vulgaris 7-oxalactone type of BRs [brassinolide (BL) and its derivatives] are more active than 6-ketone type of BRs [castasterone (CS) and its derivatives]. It was found that BRs used within the range of concentration of 10−12 to 10−8 m stimulate two- to threefold the growth and division of C. vulgaris cells. The most stimulating influence upon the number of the algal cells and the phosphorus, chlorophyll, and monosaccharides contained in the alga, as well as the intensity of the photosynthesis, and sugar and glycolate excretion was demonstrated by BL at a concentration 10−8 m in the 36th h of cultivation. HomoCS was characterized by the lowest biological activity. In turn, after the 48th h an inhibition of the rate of growth and development of the alga takes place. In the range from 10−7 to 10−6 m the inhibition of growth and development of the alga was manifested by BRs. During the further toxic activity of BRs the cells of C. vulgaris undergo complete degradation. In turn, in concentrations lower than 10−12 m, BRs do not exert any biologically significant influence upon C. vulgaris cells. On the basis of the study, the biological activity of BRs was arranged in the following order: BL > 24-epiBL > homoBL > CS > 24-epiCS > homoCS. Received July 21, 1997; accepted April 7, 1998  相似文献   

8.
The element phosphorus made up 0.5% of the dry weight of dehulled Avena fatua caryopses 7 days after anthesis (DAA), half of it inorganic (Pi). Caryopses detached and pierced 7 DAA germinated in vitro with a rapid drop in Pi levels. By 15–20 DAA caryopsis dry weight had increased three- to fourfold, but phosphorus made up less than 0.04% of the dry weight of this enlarged caryopsis. Caryopses at this stage germinated readily without piercing if incubated in vitro. A further decrease in Pi accompanied by a marked increase in phytate phosphorus began about 15 DAA and continued during later seed maturation. By 20 DAA, when embryos were relatively mature and endosperm cell division had ceased, a decrease in caryopsis water content (as a percentage of dry weight) began, and seed dormancy became apparent. As starch and phytate reserves accumulated, Pi and water levels of the caryopsis diminished. Higher levels of endogenous Pi coincided with the anabolic events of initial seed formation and, to a lesser extent, with anabolic events of seed germination. Decreasing Pi levels coincided with accumulation of nutrient reserves, lowering of water content, and the initiation of dormancy. The data suggest that (1) enzymes associated with the formation and development of the embryo may be activated by the high Pi levels present during initial seed differentiation; (2) embryo quiescence and dormancy are facilitated by the drop of Pi levels which accompanies the accumulation of starch and phytate reserves; and (3) the increase in Pi which accompanies seed afterripening aids in the termination of dormancy and the resumption of germination. Received August 15, 1996; accepted December 2, 1996  相似文献   

9.
Subjecting Saccharomyces cerevisiae cells to a hypotonic downshift by transferring cells from YPD medium containing 0.8 m sorbitol to YPD medium without sorbitol induces a transient rapid influx of Ca2+ and other divalent cations into the cell. For cells grown in YPD at 37°C, this hypotonic downshift increases Ca2+ accumulation 6.7-fold. Hypotonic downshift-induced Ca2+ accumulation and steady-state Ca2+ accumulation in isotonic YPD medium are differentially affected by dodecylamine and Mg2+. The Ca2+-influx pathway responsible for hypotonic-induced Ca2+ influx may account for about 10–35% of Ca2+ accumulation by cells growing in YPD. Ca2+ influx is not required for cells to survive a hypotonic downshift. Hypotonic downshift greatly reduces the ability of S. cerevisiae cells to survive a 5-min exposure to 10 mm Cd2+ suggesting that mutants resistant to acute Cd2+ exposure may help identify genes required for hypotonic downshift-induced divalent cation influx. Received: 14 January 1997/Revised: 20 June 1997  相似文献   

10.
The effects of benzyladenine (BAP), kinetin (KIN), zeatin (ZEA), isopentenyladenine (2iP), and thidiazuron (TDZ) were studied on in vitro growth of rudimentary embryos of Ilex paraguariensis St. Hil. Heart stage zygotic embryos were removed from seeds of immature, light green fruits and cultured aseptically on quarter-strength Murashige and Skoog medium containing 3% sucrose, 0.65% agar, and supplemented with or without three concentrations of BAP, KIN, ZEA, 2iP, or TDZ. Cultures were incubated in darkness at 27 ± 2°C. Media containing 4.4 × 10−6 m BAP, 4.6 × 10−6 m KIN, or 4.9 × 10−6 m 2iP were totally ineffective in inducing embryo growth after culture for 28 days. However, lower concentrations of these compounds (4.4 × 10−8 m BAP, 4.6 × 10−8 m KIN, 4.5 × 10−8 m ZEA, or 4.9 × 10−8 m 2iP) promoted embryo growth. TDZ at 9.9 × 10−9 m, 9.9 × 10−8 m, or 9.9 × 10−7 m induced embryo growth at similar rates. The maximum percentage of embryos converted to seedlings was achieved when the medium was supplemented with 4.5 × 10−7 m ZEA. Received August 1, 1997; accepted February 19, 1998  相似文献   

11.
We previously cloned a MaxiK channel α-subunit isoform, rbslo1, from rabbit kidney with an amino acid sequence highly homologous to mslo but with a 59 amino acid insertion between S8 and S9 (Morita et al., 1997. Am. J. Physiol. 273:F615–F624). rbslo1 activation properties differed substantially from mslo with much greater Ca2+ sensitivity, half-activation potential of −49 mV in 1 μm Ca2+. We now report single-channel analysis of rbslo1 and delA, a construct produced by removal of the 59 amino acid insertion at site A. delA is identical to mslo from upstream of S1 to downstream of S10 with the exception of 8 amino acids. Slope of the steady-state Boltzmann voltage activation curve was 8.1 mV per e-fold change in probability of opening for both rbslo1 and delA. The apparent [Ca2+] i properties in delA were more like mslo but the voltage-activation properties remained distinctly rbslo1. Ca2+ affinity decreased and transmembrane voltage effects on apparent Ca2+ affinity increased in delA. The differences between rbslo1 and other cloned channels appear to be localized at insertion site A with both the insertion sequence and amino acid substitutions near site A being important. The steeper activation slope makes the channel more responsive to small changes in transmembrane voltage while the insertion sequence makes the channel functional at physiological low levels of [Ca2+] i . Received: 23 August 1999  相似文献   

12.
The properties of Mg2+ conductances in Paramecium tetraurelia were investigated under two-electrode voltage clamp. When bathed in physiological Mg2+ concentrations (0.5 mm), depolarizing steps from rest elicited a prominent Mg2+-specific current (I Mg) that has been noted previously. The dependence of this current on extracellular Mg2+ approximated that of Mg2+-induced backward swimming, demonstrating that I Mg contributes to normal membrane excitation and behavior in this ciliate. Closer analysis revealed that the Mg2+ current deactivated biphasically. While this might suggest the involvement of two Mg2+-specific pathways, both tail-current components were affected similarly by current-specific mutations and they had similar ion selectivities, suggesting a common pathway. In contrast, a Mg2+ current activated upon hyperpolarization could be separated into three components. The first, I Mg, had similar properties to the current activated upon depolarization. The second was a nonspecific divalent cation current (I NS) that was revealed following suppression of I Mg by eccentric mutation. The final current was relatively minor and was revealed following suppression of I Mg and I NS by obstinate A gene mutation. Reversal-potential analyses suggested that I Mg and I NS define two intracellular compartments that contain, respectively, low (0.4 mm) and high (8 mm) concentrations of Mg2+. Measurement of intracellular free Mg2+ using the fluorescent dye, Mag-fura-2, suggested that bulk [Mg2+] i rests at around 0.4 mm in Paramecium. Received: 12 January 1998/Revised: 16 March 1998  相似文献   

13.
These experiments were done to determine the effect of glibenclamide and diazoxide on the growth of human bladder carcinoma (HTB-9) cells in vitro. Cell growth was assayed by cell counts, protein accumulation, and 3H-thymidine uptake. Glibenclamide added at 75 and 150 μm for 48 hr reduced cell proliferation. Dose-inhibition curves showed that glibenclamide added for 48 hr reduced cell growth at concentrations as low as 1 μm (IC50= 73 μm) when growth was assayed in the absence of added serum. This μM-effect on cell growth was in agreement with the dose range in which glibenclamide decreased open probability of membrane KATP channels. Addition of glibenclamide for 48 hr also altered the distribution of cells within stages of the cell cycle as determined by flow cytometry using 10−5 m bromodeoxyuridine. Glibenclamide (100 μm) increased the percentage of cells in G0/G1 from 33.6% (vehicle control) to 38.3% (P < 0.05), and it reduced the percentage of cells in S phase from 38.3% to 30.6%. On the other hand, diazoxide, which opens membrane KATP channels in HTB-9 cells, stimulated growth measured by protein accumulation, but it did not increase the cell number. We conclude that the sulfonylurea receptor and the corresponding membrane KATP channel are involved in mechanisms controlling HTB-9 cell growth. However, KATP is not rate-limiting among the signaling mechanisms or molecular switches that regulate the cell cycle. Received: 12 June 1997/Revised: 21 October 1997  相似文献   

14.
The same isoform of ryanodine receptor (RYR1) is expressed in both fast and slow mammalian skeletal muscles. However, differences in contractile activation and calcium release kinetics in intact and skinned fibers have been reported. In this work, intracellular Ca2+ transients were measured in soleus and extensor digitorum longus (EDL) single muscle fibers using mag-fura-2 (K D for Ca2+= 49 μm) as Ca2+ fluorescent indicator. Fibers were voltage-clamped at V h =−90 mV and sarcoplasmic reticulum calcium release was measured at the peak (a) and at the end (b) of 200 msec pulses at +10 mV. Values of a-b and b were assumed to correspond to Ca2+-gated and voltage-gated Ca2+ release, respectively. Ratios (b/a-b) in soleus and EDL fibers were 0.41 ± 0.05 and 1.01 ± 0.13 (n= 12), respectively. This result suggested that the proportion of dihydropyridine receptor (DHPR)-linked and unlinked RYRs is different in soleus and EDL muscle. The number of DHPR and RYR were determined by measuring high-affinity [3H]PN200-110 and [3H]ryanodine binding in soleus and EDL rat muscle homogenates. The B max values corresponded to a PN200-110/ryanodine binding ratio of 0.34 ± 0.05 and 0.92 ± 0.11 for soleus and EDL muscles (n= 4–8), respectively. These data suggest that soleus muscle has a larger calcium-gated calcium release component and a larger proportion of DHPR-unlinked RYRs. Received: 31 August 1995/Revised: 25 January 1996  相似文献   

15.
Block of K+ channels can be influenced by the ability of charged residues on the protein surface to accumulate cationic blocking ions to concentrations greater than those in bulk solution. We examined the ionic strength dependence of extracellular block of Shaker K+ channels by tetraethylammonium ions (TEA+) and by a trivalent quaternary ammonium ion, gallamine3+. Wild-type and mutant channels were expressed in Xenopus oocytes and currents recorded with the cut-open oocyte technique. Channel block by both compounds was substantially increased when the bathing electrolyte ionic strength was lowered, but with a much larger effect for trivalent gallamine. These data were quantitatively well described by a simple electrostatic model, accounting for accumulation of blocking ions near the pore of the channel by surface charges. The surface charge density of the wild-type channel consistent with the results was −0.1 e nm−2. Shaker channels with T449Y mutations have an increased affinity for both TEA and gallamine but the ionic strength dependence of block was described with the same surface charge density as wild-type channels. Much of the increased sensitivity of Shaker K+ channels to gallamine may be due to a larger local accumulation of the trivalent ion. The negative charge at position 431 contributes to the sensitivity of channels to TEA (MacKinnon & Yellen, 1990). A charge reversal mutation at this location had little effect on the ionic strength dependence of quaternary ammonium ion block, suggesting that the charge on this amino acid may directly affect binding affinity but not local ion accumulation. Received: 7 December 2000/Revised: 27 April 2001  相似文献   

16.
Previous reports have indicated that Plasmodium falciparum-infected red cells (pRBC) have an increased Ca2+ permeability. The magnitude of the increase is greater than that normally required to activate the Ca2+-dependent K+ channel (K Ca channel) of the red cell membrane. However, there is evidence that this channel remains inactive in pRBC. To clarify this discrepancy, we have reassessed both the functional status of the K Ca channel and the Ca2+ permeability properties of pRBC. For pRBC suspended in media containing Ca2+, K Ca channel activation was elicited by treatment with the Ca2+ ionophore A23187. In the absence of ionophore the channel remained inactive. In contrast to previous claims, the unidirectional influx of Ca2+ into pRBC in which the Ca2+ pump was inhibited by vanadate was found to be within the normal range (30–55 μmol (1013 cells · hr)−1), provided the cells were suspended in glucose-containing media. However, for pRBC in glucose-free media the Ca2+ influx increased to over 1 mmol (1013 cells · hr)−1, almost an order of magnitude higher than that seen in uninfected erythrocytes under equivalent conditions. The pathway responsible for the enhanced influx of Ca2+ into glucose-deprived pRBC was expressed at approximately 30 hr post-invasion, and was inhibited by Ni2+. Possible roles for this pathway in pRBC are considered. Received: 12 May 1999/Revised: 8 July 1999  相似文献   

17.
The concentration of intracellular calcium, [Ca2+] i , in Paramecium was imaged during cold-sensitive response by monitoring fluorescence of two calcium-sensitive dyes, Fluo-3 and Fura-Red. Cooling of a deciliated Paramecium caused a transient increase in [Ca2+] i at the anterior region of the cell. Increase in [Ca2+] i was not observed at any region in Ca2+-free solution. Under the electrophysiological recording, a transient depolarization of the cell was observed in response to cooling. On the voltage-clamped cell, cooling induced a transient inward current under conditions where K+ currents were suppressed. These membrane depolarizations and inward currents in response to cooling were lost upon removing extracellular Ca2+. The cold-induced inward current was lost upon replacing extracellular Ca2+ with equimolar concentration of Co2+, Mg2+ or Mn2+, but it was not affected significantly by replacing with equimolar concentration of Ba2+ or Sr2+. These results indicate that Paramecium cells have Ca2+ channels that are permeable to Ca2+, Ba2+ and Sr2+ in the anterior soma membrane and the channels are opened by cooling. Received: 1 April 1996/Revised: 23 July 1996  相似文献   

18.
Modification of the structure of abscisic acid (ABA) has been reported to result in modification of its physiologic activity. In this study we tested the effect of removing methyl groups from the ring and of chirality of ABA on activity in microspore-derived embryos of oilseed rape (Brassica napus L.). The natural (+)-ABA molecule induced growth inhibition and an increase in the amount of erucic acid accumulated in the oil at medium concentrations less than 1 μm. (−)-ABA showed similar effects. Removing the 7′-methyl group resulted in a dramatic decrease in activity: (+)-7′-demethyl-ABA retained some activity as a growth inhibitor; a 10–100 μm concentration of this compound was needed for a response, and (−)-7′-demethyl-ABA was almost completely inactive. Similar effects were observed with regard to elongase activity, which catalyzes erucic acid biosynthesis from oleic acid. Removal of the 8′- and 9′-methyl groups resulted in a more complex response. These compounds all showed intermediate activity; for growth inhibition, the presence of the 9′-methyl was the more important determinant, whereas chirality dominated the response on erucic acid accumulation, with the (+)-enantiomers being more active. Received July 25, 1997; accepted October 31, 1997  相似文献   

19.
In alstroemeria (Alstroemeria hybrida), leaf senescence is retarded effectively by the application of gibberellins (GAs). To study the role of endogenous GAs in leaf senescence, the GA content was analyzed by combined gas chromatography and mass spectrometry. Five 13-hydroxy GAs (GA19, GA20, GA1, GA8, and GA29) and three non-13-hydroxy GAs (GA9 and GA4) were identified in leaf extracts by comparing Kováts retention indices (KRIs) and full scan mass sprectra with those of reference GAs. In addition, GA15, GA44, GA24, and GA34 were tentatively identified by comparing selected ion monitoring results and KRIs with those of reference GAs. A number of GAs were detected in conjugated form as well. Concentrations of GAs in alstroemeria changed with the development of leaves. The proportion of biologically active GA1 and GA4 decreased with progressive senescence and the fraction of conjugated GAs increased. Received May 26, 1997; accepted August 12, 1997  相似文献   

20.
The effect of disaccharide lepidimoide on light-induced chlorophyll accumulation was studied in cotyledons of sunflower (Helianthus annuus L.) seedlings and detached cucumber (Cucumis sativus L.) cotyledons. From studies on the structure-activity relationships of lepidimoide, its analogs, and sucrose with respect to light-induced chlorophyll accumulation in the cotyledons of sunflower seedlings, both lepidimoide and the free carboxylic acid of lepidimoide (lepidimoic acid) showed the highest promoting activity, whereas the hydrogenated lepidimoide, which lacks a double bond in the C4, 5 position in uronic acid, showed lower activity than lepidimoide; however, sucrose exhibited very weak activity. These results suggest that lepidimoide acts as a new type of plant growth regulator, not simply as a carbon source providing energy. Lepidimoide promoted not only light-induced chlorophyll accumulation in sunflower cotyledons but also light-induced 5-aminolevulinic acid content, which is considered to be a rate-limiting step in chlorophyll biosynthesis. Lepidimoide with cytokinin stimulated the accumulation of chlorophyll and 5-aminolevulinic acid additively. In detached cucumber cotyledons, lepidimoide also promoted light-induced chlorophyll accumulation. These results indicate that lepidimoide, in cooperation with cytokinin, causes light-induced chlorophyll accumulation in the cotyledons of several dicot plant species by affecting the level of 5-aminolevulinic acid. Received April 4, 1997; accepted September 28, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号