首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Digital-imaging microscopy was used in conditions that allowed the native state to be preserved and hence fluorescence variations of specific probes to be followed in the real time of living mammalian cells. Ethidium bromide was shown to enter into living cells and to intercalate stably into mitochondrial DNA (mtDNA), giving rise to high fluorescence. When the membrane potential or the pH gradient across the inner membrane was abolished by specific inhibitors or ionophores, the ethidium fluorescence disappeared from all mtDNA molecules within 2 min. After removal of the inhibitors or ionophores, ethidium fluorescence rapidly reappeared in mitochondria, together with the membrane potential. The fluorescence extinction did not result from an equilibrium shift caused by leakage of free ethidium out of mitochondria when the membrane potential was abolished but was most likely due to a dynamical mtDNA change that exposed intercalated ethidium to quencher, either by weakening the ethidium binding constant or by giving access of a proton acceptor (such as water) to the interior of mtDNA. Double labeling with ethidium and with a minor groove probe (4',6-diamino-2-phenylindole) indicated that mtDNA maintains a double-stranded structure. The two double-stranded DNA states, revealed by the fluorescence of mitochondrial ethidium, enhanced or quenched in the presence of ethidium, seem to coexist in mitochondria of unperturbed fibroblast cells, suggesting a spontaneous dynamical change of mtDNA molecules. Therefore, the ethidium fluorescence variation allows changes of DNA to be followed, a property that has to be taken into consideration when using this intercalator for in vivo as well as in vitro imaging studies.  相似文献   

2.
Instability of mitochondrial DNA (mtDNA) has been associated with the initiation and development of cancer, but the specific role of mtDNA in the invasiveness and migration of cancer cells remains unclear. In this study, we investigated whether the chemokine CXCL12 causes intact mitochondria to redistribute in cancer cells and, in this way, to increase cell invasiveness and migration. A549 lung cancer cells with intact mtDNA (mtDNA+) and ρ0A549 cells depleted of mtDNA (mtDNA?) by long-term ethidium bromide incubation were examined for their responses to CXCL12 in a transwell migration assay and for mitochondrial distribution by fluorescence microscopy. Intact A549 cells showed significantly increased migration and increased polar distribution of mitochondria (asymmetry) in response to CXCL12. However, ρ0A549 cells showed no changes in mitochondrial distribution in response to CXCL12, and only a few ρ0A549 cells migrated across the transwell membrane after CXCL12 treatment. These results demonstrate that, in A549 lung cancer cells, intact mitochondrial DNA is necessary for mitochondrial redistribution and a chemotactic response to CXCL12.  相似文献   

3.
目的: 分析mtDNA3010A/G变异在急性缺氧条件下的长链非编码RNA(lncRNA)和信使RNA(mRNA)的共表达网络变化,探讨关键lncRNA和mRNA在低氧诱导的基因表达调控中的作用。方法: 筛选线粒体DNA(mtDNA)3010-5178-10400的基因型组合A-C-C和G-C-C,以骨肉瘤细胞经溴化乙锭处理后形成的无线粒体细胞(ρ0206细胞)为供体,构建mtDNA3010A和mtDNA3010G基因型融合细胞。经1%O2处理24 h后,采用lncRNA-mRNA共表达芯片检测两种融合细胞的差异表达lncRNA和mRNA,荧光定量聚合酶链式法验证差异显著的mRNA,运用生物信息学方法构建lncRNA-mRNA共表达网络,预测差异lncRNA的靶基因,并对差异显著的mRNA和预测靶基因进行基因本体(GO)和京都基因与基因组大百科全书(KEGG)预测分析。结果: 经1%O2处理24 h后,与mtDNA3010G融合细胞相比,mtDNA3010A融合细胞表达上调的lncRNA有688个,超过2倍的有21个,表达下调的lncRNA有1098个,超过2倍的有4个;表达上调的mRNA有1151个,超过2倍的有14个,表达下调的mRNA有539个,超过2倍的有3个。结论: mtDNA3010A/G基因型变异在缺氧条件下能够影响lncRNA-mRNA调控网络的变化,差异表达的lncRNA和mRNA可能在低氧诱导的基因表达调控网络中发挥重要作用,有望成为从线粒体角度调控低氧反应的靶点。  相似文献   

4.
Dequalinium (DEQ), a drug with both antimicrobial and anticancer activity, induced the formation of petite (respiration-deficient) mutants in the yeast Saccharomyces cerevisiae. DEQ was found to be approximately 50-fold more potent than ethidium bromide (EB) at inducing petites. Analysis of the DEQ-induced petite mutants indicated a complete loss of mitochondrial DNA (<1 copy/cell). Prior to the loss of mtDNA, DEQ caused cleavage of the mtDNA into a population of fragments 30-40kbp in size suggesting that this drug causes petites by inducing a breakdown of mtDNA. The selective effect of DEQ on yeast mtDNA may underlie the antifungal activity of this chemotherapeutic agent.  相似文献   

5.
Summary The embryonal carcinoma cell line P19 is derived from mouse teratocarcinomas. These pluripotent cells can be induced to differentiate into a variety of cell types by exposure to various drugs. We used retinoic acid to induce embryonal carcinoma cells to differentiate into neuronlike cells. In this study, we show that changes occur in mitochondria during differentiation of embryonal carcinoma cells to neuronlike cells. We found that various morphologic parameters such as mitochondrial fractional area and mitochondrial size decrease as embryonal carcinoma cells differentiate into neuronlike cells. Similar changes were also observed in mitochondrial DNA content. Stereologic analysis of cell preparations provided a measure of mitochondrial fractional area per cell and mtDNA content was assessed by radiolabeled mtDNA probe. This study establishes that mitochondria are regulated as cells differentiate. This study was financially supported by the Medical Research Council of Canada.  相似文献   

6.
Ethidium bromide (EtBr) is widely used to deplete mitochondrial DNA (mtDNA) and produce mitochondrial DNA-less cell lines. However, it frequently fails to deplete mtDNA in mouse cells. In this study we show by using a highly sensitive real-time PCR, that low doses of EtBr (10 microM) did lead to a three-fold increase of the total amount of mitochondrial DNA in a human neuronal cell line (Ntera 2). A higher dose of EtBr (25 microM) led to the expected decrease of mtDNA until day 22 when the cells almost died. Cell growth and mtDNA content could be restored after additional 22 days of non-EtBr treatment. The highest concentration of 50 microM also led to a significant increase of mtDNA. The cells died when they had only about 10% of mtDNA left, indicating a mtDNA threshold for cell survival. Additionally, the so-called common 4977 bp deletion could be induced by prolonged exposure to ethidium bromide. Whereas the higher doses led to significant higher amounts of deleted mtDNA.  相似文献   

7.
MITOCHONDRIAL DNA REPLICATION IN SEA URCHIN OOCYTES   总被引:9,自引:0,他引:9       下载免费PDF全文
Mitochondrial DNA (mtDNA) replicative intermediates from Strongylocentrotus purpuratus oocytes were isolated by ethidium bromide-CsCl density gradient centrifugation and examined by electron microscopy after formamide spreading. In some experiments, the mtDNA was radioactively labeled by exposing isolated oocytes to [3H]thymidine. Oocyte mtDNA replication appears to follow the displacement loop model outlined in mouse L cells. There are differences in detail. The frequency of D-loop DNA is much lower in oocytes, suggesting that the relative holding time at the D-loop stage is shorter. Duplex synthesis on the displaced strand occurs early and with multiple initiations. The frequency of totally duplex replicative forms, or Cairns' forms, is the highest reported for mtDNA. The differences may be related to the fact that oocyte mtDNA replication occurs in the absence of cell division and need not be coordinated with a cell cycle. Molecules with expanded D loops banded in the intermediate region between the lower and upper bands in an ethidium bromide-CsCl gradient, supporting the notion that displacement replication proceeds on a closed circular template which is subject to nicking-closing cycles. In mature sea urchin eggs, replicative forms are absent and virtually all the mtDNA is stored as clean circular duplexes. Some novel structural variants of superhelical circular DNA (molecules with denaturation loops and double branch-migrated replicative forms) are reported.  相似文献   

8.
Zhou X  Li N  Wang Y  Wang Y  Zhang X  Zhang H 《Mitochondrion》2011,11(6):886-892
There have been a small number of reports of radiation-induced mtDNA damage, and mtDNA supercoiling formation change induced by ionizing radiation has not been investigated before. This study evaluated mtDNA damage and supercoiling formation change after X-irradiation. The human breast cancer cell line, MCF-7 cells were used for analysis. Modified supercoiling-sensitive real-time PCR approach was used to evaluate mitochondrial DNA supercoiling formation change and copy number; long-PCR method was applied for the quantification of mtDNA damage. MtDNA damage and formation change induced by high-dose irradiation was persistent in 24 h after irradiation and was not significant after low-dose irradiation. MtDNA copy number was slightly increased after high-dose irradiation and a transit increase was observed after low-dose irradiation. This is the first study to evaluate radiation-induced mitochondrial DNA supercoiling formation change using real-time PCR. Combined with data of ROS generation and dynamics of mitochondrial mass, our findings suggested that mtDNA is sensitive to radiation hazards, indicating mitochondrial biogenesis play an important role in radiation-induced cellular response.  相似文献   

9.
10.
In embryos derived by nuclear-transfer (NT), fusion of donor cell and recipient oocyte caused mitochondrial heteroplasmy. Previous studies from other laboratories have reported either elimination or maintenance of donor-derived mitochondrial DNA (mtDNA) from somatic cells in cloned animals. Here we examined the distribution of donor mtDNA in NT embryos and calves derived from somatic cells. Donor mitochondria were clearly observed by fluorescence labeling in the cytoplasm of NT embryos immediately after fusion; however, fluorescence diminished to undetectable levels at 24 hr after nuclear transfer. By PCR-mediated single-strand conformation polymorphism (PCR-SSCP) analysis, donor mtDNAs were not detected in the NT embryos immediately after fusion (less than 3-4%). In contrast, three of nine NT calves exhibited heteroplasmy with donor cell mtDNA populations ranging from 6 to 40%. These results provide the first evidence of a significant replicative advantage of donor mtDNAs to recipient mtDNAs during the course of embryogenesis in NT calves from somatic cells.  相似文献   

11.
12.
We previously showed that the mitochondrial DNA (mtDNA) of a Brassica campestris callus culture had undergone extensive rearrangements (i.e. large inversions and a duplication) relative to DNA of the control plant [54]. In this study we observed that after continued growth, the mtDNA of this culture continues to change, with rearranged forms amplifying and diminishing to varying proportions. Strikingly similar changes were detected in the mtDNA profiles of a variety of other long- and short-term callus and cell suspension lines. However, the proportions of parental (unrearranged) and novel (rearranged) forms varied in different cultured cell mtDNAs. To address the source of this heterogeneity, we compared the mtDNA organization of 28 individual plants from the parental seed stock. With the exception of one plant containing high levels of a novel plasmid-like mtDNA molecule, no significant variation was detected among individual plants and therefore source plant variation is unlikely to have contributed to the diversity of mitochondrial genomes observed in cultured cells. The source of this culture-induced heterogeneity was also investigated in 16 clones derived from single protoplasts. A mixed population of unrearranged and rearranged mtDNA molecules was apprent in each protoclone, suggesting that the observed heterogeneity in various cultures might reflect the genomic composition of each individual cell; however, the induction of an intercellular heterogeneity subsequent to the protoplast isolation was not tested and therefore cannot be ruled out. The results of this study support our earlier model that the rapid structural alteration of B. campestris mtDNA in vitro results from preferential amplification and reassortment of minor pre-existing forms of the genome rather than de novo rearrangement. Infrequent recombination between short dispersed repeated elements is proposed as the underlying mechanism for the formation of these minor mtDNA molecules.  相似文献   

13.
HeLa cell mitochondria were allowed to incorporate 3H-thymidine in a cell free system and the effect of ethidium bromide, cytosine arabinoside and cytosine arabinoside triphosphate on the labeling of mitochondrial DNA was studied. The labeled products, isolated by sedimentation velocity in CsCl-ethidium bromide two-step gradients, showed similar sedimentation profiles as in vivo labeled mtDNA. Cytosine arabinoside triphosphate and ethidium bromide strongly inhibited the labeling of mitochondrial DNA, whereas cytosine arabinoside appeared to be much less effective. Tritiated deoxycytidine was found to be incorporated by isolated mitochondria, whereas cytosine arabinoside was shown to enter the mitochondrial acid-soluble pool but not to be incorporated in acid-insoluble form. These results are in agreement with the previously reported findings of in vivo experiments.  相似文献   

14.
Aging is the largest risk factor for cardiovascular disease, yet the molecular mechanisms underlying vascular aging remain unclear. Mitochondrial DNA (mtDNA) damage is linked to aging, but whether mtDNA damage or mitochondrial dysfunction is present and directly promotes vascular aging is unknown. Furthermore, mechanistic studies in mice are severely hampered by long study times and lack of sensitive, repeatable and reproducible parameters of arterial aging at standardized early time points. We examined the time course of multiple invasive and noninvasive arterial physiological parameters and structural changes of arterial aging in mice, how aging affects vessel mitochondrial function, and the effects of gain or loss of mitochondrial function on vascular aging. Vascular aging was first detected by 44 weeks (wk) of age, with reduced carotid compliance and distensibility, increased β‐stiffness index and increased aortic pulse wave velocity (PWV). Aortic collagen content and elastin breaks also increased at 44 wk. Arterial mtDNA copy number (mtCN) and the mtCN‐regulatory proteins TFAM, PGC1α and Twinkle were reduced by 44 wk, associated with reduced mitochondrial respiration. Overexpression of the mitochondrial helicase Twinkle (Tw+) increased mtCN and improved mitochondrial respiration in arteries, and delayed physiological and structural aging in all parameters studied. Conversely, mice with defective mitochondrial polymerase‐gamma (PolG) and reduced mtDNA integrity demonstrated accelerated vascular aging. Our study identifies multiple early and reproducible parameters for assessing vascular aging in mice. Arterial mitochondrial respiration reduces markedly with age, and reduced mtDNA integrity and mitochondrial function directly promote vascular aging.  相似文献   

15.
Bovine fetal fibroblast cells were treated with ethidium bromide at a low concentration for 15 passages in culture to determine its effect on mitochondrial DNA copy number and on cell metabolism. Mitochondrial membrane potential and lactate production were estimated in order to characterize cell metabolism. In addition, mitochondrial DNA ND5 in proportion to a nuclear gene (luteinizing hormone receptor) was determined at the 1st, 2nd, 3rd, 10th, and 15th passages using semi-quantitative PCR amplification. Treated cells showed a lower mitochondrial membrane potential and higher levels of lactate production compared with control cells. However, the mitochondrial DNA/nuclear DNA ratio was higher in treated cells compared with control cells at the 10th and 15th passages. This ratio changed between the 3rd and 10th passages. Despite a clear impairment in mitochondrial function, ethidium bromide treatment did not lead to mitochondrial DNA depletion. It is possible that in response to a lower synthesis of ATP, due to an impairment in oxidative phosphorylation, treated cells develop a mechanism to resist the ethidium bromide effect on mtDNA replication, resulting in an increase in mitochondrial DNA copy number.  相似文献   

16.
Summary Populations of quail and chicken cells were treated with ethidium bromide, an inhibitor of mitochondrial DNA replication. After long-term exposure to the drug, the cell populations were transferred to ethidium bromide (EtdBr)-free medium, and cloned. Clones HCF7 (quail) and DUS-3 (chicken) were propagated for more than a year, and then characterized. Analysis of total cellular DNA extracted from these cells revealed no characteristic mitochondrial DNA molecule by Southern blot hybridization of HindIII- or AvaI-digested total cellular DNA probed with cloned mitochondrial DNA fragments. Reconstruction experiments, where a small number of parental cells was mixed with HCF7 cells and DUS-3 cells before extraction of total cellular DNA, further strengthen the notion that the drug-treated cells are devoid of mitochondrial DNA molecules. The cell populations were found to proliferate at a moderately reduced growth rate as compared to their respective parents, to be auxotrophic for uridine, and to be stably resistant to the growth inhibitory effect of EtdBr and chloramphenicol. At the ultrastructural level, mitochondria were considerably enlarged and there was a severe reduction in the number of cristae within the organelles and loss of cristae orientation. Morphometric analysis revealed a fourfold increase of the mitochondrial profile area along with a twofold decrease of the numerical mitochondrial profiles. Analysis of biochemical parameters indicated that the cells grew with mitochondria devoid of a functional respiratory chain. The activity of the mitochondrial enzyme dihydroorotate dehydrogenase was decreased by 95% and presumably accounted for uridine auxotrophy. This work was supported by a grant from the Medical Research Council of Canada.  相似文献   

17.
The mitochondrial free radical theory of aging suggests that accumulating oxidative damage to mitochondria and mitochondrial DNA (mtDNA) plays a central role in aging. Circulating cell‐free mtDNA (ccf‐mtDNA) isolated from blood may be a biomarker of disease. Extracellular vesicles (EVs) are small (30–400 nm), lipid‐bound vesicles capable of shuttling proteins, nucleic acids, and lipids as part of intercellular communication systems. Here, we report that a portion of ccf‐mtDNA in plasma is encapsulated in EVs. To address whether EV mtDNA levels change with human age, we analyzed mtDNA in EVs from individuals aged 30–64 years cross‐sectionally and longitudinally. EV mtDNA levels decreased with age. Furthermore, the maximal mitochondrial respiration of cultured cells was differentially affected by EVs from old and young donors. Our results suggest that plasma mtDNA is present in EVs, that the level of EV‐derived mtDNA is associated with age, and that EVs affect mitochondrial energetics in an EV age‐dependent manner.  相似文献   

18.
Deoxynucleosides are incorporated into mitochondrial DNA (mtDNA) of large oocytes; the rate of incorporation is about 2% of the mtDNA amount per 24 hr. When oocytes have been induced to mature in vitro with human chorionic gonadotropin (HCG), uptake and actual incorporation of thymidine decrease, although phosphorylation is enhanced. An examination of mtDNA replication shows that HCG treatment induces an increase in the relative synthesis of E-strands and an accumulation of D-loops. A similar effect is obtained by ethidium bromide treatment. Thus, gonadotropin appears to delay E-strand elongation and to synchronize mtDNA molecules at the begining of their replication cycle.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号