首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activities of three types of superoxide dismutase in tissue fractions were significantly lower in fetal and adult brain and fetal limb preparations than in fetal and adult heart preparations. An exception was the cyto-plasmic fraction of adult brain that had levels of Cu, Zn-superoxide dismutase activity comparable to those in cytoplasmic fractions of heart. In addition, Mn superoxide dismutase activity appeared to be very low in all fetal mitochondrial matrix fractions and cytoplasmic fractions as well as in adult brain. Finally, the results of these studies emphasize the importance of two antioxidant defense systems in the tissues studied, one associated with the mitochondrial electron transport system and the other, the cytosolic Cu, Zn enzyme.  相似文献   

2.
3.
Subcellular localization of superoxide dismutase in rat liver.   总被引:6,自引:0,他引:6       下载免费PDF全文
The subcellular localization of superoxide dismutase was investigated in rat liver homogenates. Most of the superoxide dismutase activity is present in the soluble fraction (84%), the rest being associated with mitochondria. No indications for the occurrence of superoxide dismutase in other subcellular structures, particularly in peroxisomes, was found. Mitochondrial activity is not due to adsorption, since the sedimentable activity is essentially latent. Subfractionation of mitochondria by hypo-osmotic shock and sonication shows that half of the mitochondrial superoxide dismutase activity is localized in the intermembrane space, the rest of the enzyme being a component of the matrix space. In non-ionic media the matrix enzyme is, however, adsorbed to the inner membrane, from which it can be desorbed by low (0.04M) concentration of KCl. Superoxide dismutase activity was found in all rat organs investigated. Maximal activity of the enzyme is observed in liver, adrenals and kidney. In adrenals, the highest specific activity is associated with the medulla.  相似文献   

4.
Modulating mitochondrial antioxidant status is a nutritional issue of great interest in the treatment or prevention of several oxidative stress related diseases such as obesity. Thus, the aim of the present study was to analyze the effects of three antioxidants on hepatic mitochondrial function and antioxidant status. Isolated rat liver mitochondria were incubated with vitamin C, resveratrol and lipoic acid. The activity of antioxidant enzymes (manganese superoxide dismutase and glutathione peroxidase), ROS generation and respiratory parameters (RCR, P/O ratio and respiratory states) were measured. Vitamin C influenced mitochondrial function by decreasing of ROS generation (P < 0.0001), by stimulating the activity of manganese superoxide dismutase (197.60 ± 35.99%; P < 0.001) as well as glutathione peroxidase (15.70 ± 5.76%; P < 0.05) and by altering the activity of the electron transport chain, mainly by decreasing the P/O ratio (P < 0.05). Resveratrol induced a significant increase in manganese superoxide dismutase activity (160 ± 11.78%; P < 0.0001) and a decrease in ROS generation (P < 0.05 to P < 0.0001). By contrast, lipoic acid inhibited glutathione peroxidase activity (16.48 ± 3.27%; P < 0.05) and induced the uncoupling of the electron transport chain (P < 0.01). Moreover, this antioxidant induced a strong decrease in the P/O ratio (P < 0.05 to P < 0.0001). In conclusion, our results suggest that the three tested antioxidants produced direct effects on mitochondrial function, although the magnitude and intensity of these actions were significantly different, which may have implications when administrated as antioxidants.  相似文献   

5.
Regulation of Mn-SOD activity in the mouse heart: glucose effect   总被引:1,自引:0,他引:1  
Intraperitoneal injection of glucose was found to cause a dose and time dependent suppression of superoxide dismutase activity in mouse heart. Manganese superoxide dismutase was more sensitive to glucose suppression than Cu-Zn superoxide dismutase. While glucose suppressed the Mn form of the enzyme at the concentration of 1.5 mg/kg, it did not have a significant effect on Cu-Zn superoxide dismutase activity at this concentration. The maximum suppression for both forms of superoxide dismutase activity occurred at 4.5 mg/kg. Glucose also suppressed manganese superoxide dismutase activity in mouse heart for a longer period of time compared to Cu-Zn superoxide dismutase. Glucose suppression also occurred in mouse brain. The glucose suppression effect on manganese superoxide dismutase activity in the heart was partially alleviated by X-irradiation.  相似文献   

6.
7.
The synthesis and subcellular localization of the two superoxide dismutases of Dactylium dendroides were studied in relation to changes in copper and manganese availability. Cultures grew normally at all medium copper concentrations used (10 nM to 1 mM). In the presence of high (10 μM) copper, manganese was poorly absorbed in comparison to the other metals in the medium. However, cells grown at 10 nM copper exhibited a 3.5-fold increase in manganese content, while the concentration of the other metals remained constant. Cultures grown at 10 nM copper or more had 80% Cu/Zn enzyme and 20% mangani enzyme; the former was entirely in the cytosol, and the latter was mitochondrial. Removal of copper from the medium resulted in decreased Cu/Zn superoxide dismutase synthesis with a concomitant increase in the mangani enzyme such that total cellular superoxide dismutase activity remained constant. The mangani enzyme in excess of the 20% was present in the non-mitochondrial fraction. The mitochondria, therefore, show no variability with respect to superoxide dismutase content, whereas the soluble fraction varies from 100 to 13% Cu/Zn superoxide dismutase. Copper-starved cells that were synthesizing predominantly mangani superoxide dismutase could be switched over to mostly Cu/Zn superoxide dismutase synthesis by supplementing the medium with copper during growth. Immunoprecipitation experiments suggest that the decrease in Cu/Zn activity at low copper concentration is a result of decreased synthesis of that protein rather than the production of an inactive apoprotein.  相似文献   

8.
The rats liver and kidneys function indices were studied in case of administration of recombinant superoxide dismutase drug, precursor of nitric oxide L-arginine and the blocker of inducible NO-synthase aminoguanidine. The disturbances in functioning of prooxidant-antioxidant system (a decrease of activity of superoxide dismutase, katalaze, amount of restored glutathione, growth of the level of hydroperoxide lipids, TBA-active products), mitochondrial electron-transport pathways (a decrease in activity of succinatedehydrogenaze, cytochrome oxydaze), a rise of nitrite-anion level in the liver and kidneys, increase of alpha-amylase activity and tumor necrosis factor alpha serum concentration were established on the model of pancreas injury in white male rats. Under these circumstances aminoguanidine attenuated the oxidative stress in the liver and kidneys due to normalization of nitric oxide synthesis. The ability to activate the antioxidant system was proved by combined usage of recombinant superoxide dismutase and aminoguanidine. It was determined that recombinant superoxide dismutase partially decreases the negative influence of L-arginine and improves the biochemical indices of the liver and kidneys function in rats with acute experimental pancreatitis.  相似文献   

9.
The activity of the antioxidant enzymes superoxide dismutase and glutathione peroxidase in loach and sturgeon embryogenesis as well as in red and white skeletal muscles of loach was studied. The specific activity of cytoplasmic and mitochondrial forms of superoxide dismutase in developing sturgeon embryos was higher than in loach embryos, which may be due to oxygen conditions under which these species develop in nature. A similar dependence was also observed for the activity of glutathione peroxidase in embryos of these fish species. A comparative study of specific superoxide dismutase activity in loach and sturgeon embryos and in loach skeletal muscles showed that the activity of cytoplasmic superoxide dismutase is maximum in red and white muscles and minimum in loach embryos, whereas the activity of the mitochondrial form of this enzyme is maximum in red skeletal muscles.  相似文献   

10.
The scavenger effect of melanin and of superoxide dismutase (SOD) activity on superoxide anion has been shown. In this work we show the relationship between melanin content and SOD activity in livers containing different quantities of melanin which were taken from various species of animals. The mitochondrial SOD activity disappears when the melanin content in the liver is very high; moreover it increases, in the liver of various species of animals examined, proportionally to the decrease of melanin content. No significant variation of the SOD activity localized in the soluble fraction has been detected when related to the melanin content. We think that in the pigmented liver the antioxidant activity of the melanin could mimic part of the function of SOD. The loss of Mn SOD activity could be mediated by a low intracellular level of superoxide anion due to the scavenger effect of melanin on superoxide anion; in fact, it is well known that the biosynthesis of Mn SOD is induced by intracellular levels of superoxide anion.  相似文献   

11.
Aspects of the utilization of copper by the fungus, Dactylium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells grown in medium containing 30 nM copper or less concentrate exogenous metal at all levels of added copper; copper uptake is essentially complete within 15 min and is not inhibited by cycloheximide, dinitrophenol or cyanide. These results indicate that copper absorption is not an energy-dependent process. The relationship between fungal copper status and the activities of three copper-containing enzymes, galactose oxidase, and extracellular enzyme, the cytosolic, Cu/Zn superoxide dismutase and cytochrome oxidase, has also been established. The synthesis of galactose oxidase protein (holoenzyme plus apo-enzyme) is independent of copper concentration. Cells grown in copper-free medium (less than 10 nM copper) excrete normal amounts of galactose oxidase as an apoprotein. At medium copper levels below 5 micrometer, new cultures contain enough total copper to enable the limited number of cells to attain sufficient intracellular copper to support hologalactose oxidase production. As a result of cell division, however, the amount of copper available per cell drops to a threshold of approx. 10 ng/mg below which point only apogalactose oxidase is secreted. Above 5 micrometer medium copper, holoenzyme secretion is maintained throughout cell growth. The levels of the Cu/Zn superoxide dismutase respond differently in that the protein itself apparently is synthesized in only limited amounts in copper-depleted cells. Total cellular superoxide dismutase activity is maintained under such conditions by an increase in activity associated with the mitochondrial, CN(-)-insensitive, manganese form of this enzyme. Cells grown at 10 micrometer copper show 83% of their superoxide dismutase activity to be contributed by the Cu/Zn form compared to a 17% contribution to the total activity in cells grown at 30 nM copper, indicating that the biosynthesis of the Cu/Zn and Mn-containing enzymes is coordinated. The data show that the level of copper modulates the synthesis of the cytosolic superoxide dismutase. In contrast, the cytochrome oxidase activity of D. dendroides is independent of cellular copper levels obtainable. Thus, the data also suggest that these three enzymes utilize different cellular copper pools. As cells are depleted of copper by cell division, the available copper is used to maintain Cu/Zn superoxide dismutase and cytochrome oxidase activity; at very low levels of copper, only the latter activity is maintained. The induction of the manganisuperoxide dismutase in copper-depleted cells should have practical value in the isolation of this protein.  相似文献   

12.
Abnormal mitochondrial function is present in patients with peripheral arterial disease and may contribute to its clinical manifestations. However, the specific biochemical mitochondrial defects and their association with increased oxidative stress have not been fully characterized. Gastrocnemius muscle was obtained from peripheral arterial disease patients (n = 25) and age-matched controls (n = 16) and mitochondrial parameters were measured. Complexes I through IV of the electron transport chain were individually evaluated to assess for isolated defects. Muscle was also evaluated for protein and lipid oxidative changes by measuring the levels of protein carbonyls, lipid hydroperoxides, and total 4-hydroxy-2-nonenal binding and for the activities of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase. Mitochondrial electron transport chain complexes I, III, and IV in arterial disease patients demonstrated significant reductions in enzymatic activities and mitochondrial respiration compared to controls. Oxidative stress biomarker analysis demonstrated significantly increased levels of protein carbonyls, lipid hydroperoxides, and 4-hydroxy-2-nonenal compared to control muscle. Antioxidant enzyme activities were altered, with a significant decrease in superoxide dismutase activity and significant increases in catalase and glutathione peroxidase. Peripheral arterial disease is associated with abnormal mitochondrial function and evidence of significant oxidative stress.  相似文献   

13.
The effect of laser and light-emitting diode radiation in the visible region of the spectrum on the content of reactive nitrogen species and superoxide dismutase activity in rat wound fluid was studied. The efficiency of action of coherent laser radiation and incoherent light-emitting diode radiation in the red region of the spectrum on the parameters analyzed was compared. The study was performed using the model of cut aseptic wounds proposed by L.I. Slutskii. A He-Ne laser (632 nm) or an U-332B light-emitting diode (630 nm) was used as the source of radiation. It was shown that (1) exposure of wounds to visible light of both laser and light-emitting diode causes dose-dependent changes in superoxide dismutase activity and nitrite production and that (2) radiation coherence does not play a significant role in the changes in superoxide dismutase activity or nitric oxide production by wound fluid phagocytes.  相似文献   

14.
In this study, by using highly purified rat liver peroxisomes, we provide evidence from analytical cell fractionation, Western blot, and immunocytochemical analysis that Cu-Zn superoxide dismutase is present in animal peroxisomes. Treatment with ciprofibrate, a peroxisome proliferator, increased the peroxisomal superoxide dismutase activity by 3-fold with no effect on mitochondrial activity but a marked decrease in cytosolic superoxide dismutase activity, further supporting that besides cytosolic and mitochondrial localization, Cu-Zn superoxide dismutase is present in peroxisomes also. Demonstration of superoxide dismutase in peroxisomes suggests a new role for this organelle in pathophysiological conditions, such as ischemia-reperfusion injury.  相似文献   

15.
Fruit senescence has been reported to be an oxidative phenomenon, but the detailed mechanisms by which ROS regulate this process remain largely unknown. Here we show that senescence process of apple fruit was concomitant with the dynamic alterations in the mitochondrial proteome. Mitochondrial proteins involved in tricarboxylic acid cycle, electron transport chain, carbon metabolism, and stress response were found to be differentially expressed during fruit senescence. Alleviating oxidative stress by lowering the ambient oxygen concentration noticeably decreased the number of changed proteins and delayed fruit senescence, indicating the involvement of ROS in this process. To further investigate the regulatory effect of ROS on senescence process, we analyzed the mitochondrial proteome variations upon exposure to high oxygen (100%), which induces oxidative stress and accelerates fruit senescence. High oxygen treatment led to a further identification of differentially expressed proteins such as mitochondrial manganese superoxide dismutase, an antioxidant scavenging superoxide radicals produced in the mitochondria. Activity of manganese superoxide dismutase was reduced after high oxygen exposure, accompanied by an increase in oxidative protein carbonylation (damaged proteins). These data suggest that ROS may regulate fruit senescence by changing expression profiles of specific mitochondrial proteins and impairing the biological function of these proteins.  相似文献   

16.
The manganese-containing superoxide dismutase in Escherichia coli is an inducible enzyme that protects cells against oxygen toxicity. The manganese-enzyme is induced by oxygen, nitrate, redox active compounds that react with oxygen to generate superoxide radicals, as well as iron chelators. In order to test the hypothesis that the redox state of the cell is involved in regulating manganese-superoxide dismutase biosynthesis, we studied the effects of several oxidants on growth and superoxide dismutase biosynthesis. The data showed, that under anaerobic conditions, the active manganese-enzyme is induced in the presence of potassium ferricyanide, copper-cyanide complex, ammonium persulfate, and hydrogen peroxide. Western blot analysis revealed that the induction of manganese-superoxide dismutase by the oxidants is associated with de novo protein biosynthesis. Potassium ferricyanide and hydrogen peroxide induced the enzyme under aerobic conditions as well. It is concluded that the redox state of the cell possibly influences the biosynthesis and/or activity of an iron-containing repressor protein that serves to negatively regulate manganese-superoxide dismutase biosynthesis.  相似文献   

17.
The action of laser and light-emitting diode radiation in the visible region on the content of reactive nitrogen species and activity of superoxide dismutase in rat wound fluid was studied, and efficiency of action of coherent laser and incoherent light emitting diode radiations in the red region of the spectrum on the parameters under study was compared. A model of incised aseptic wounds in rats proposed by L.I. Slutskiy was used. A He-Ne laser (632 nm) and a Y-332B light emitting diode served as radiation sources. It was shown that (1) exposure of wounds to the visible light of both laser and light-emitting diodes causes dose-dependent changes in superoxide dismutase activity and production of nitrites and (2) the radiation coherence does not play any significant role in the changes of superoxide dismutase activity or nitrogen oxide formation by wound fluid phagocytes.  相似文献   

18.
Oscillatoria limnetica grown photoautotrophically under aerobic or anaerobic conditions contained a single superoxide dismutase (SOD) of identical electrophoretic mobility in both cases. Its activity was cyanide resistant and H2O2 sensitive, implicating Fe-SOD. The enzyme level was high in aerobically and low in anaerobically growing cells. Anaerobically grown cells were more sensitive than aerobic to photooxidation, as expressed by bleaching of phycocyanin and disintegration of the trichomes.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - SOD superoxide dismutase  相似文献   

19.
Aspects of the utilization of copper by the fungus, Dactytium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells grown in medium containing 30 nM copper or less concentrate exogenous metal at all levels of added copper; copper uptake is essentially complete within 15 min and is not inhibited by cycloheximide, dinitrophenol or cyanide. These results indicate that copper absorption is not an energy-dependent process. The relationship between fungal copper status and the activities of three copper-containing enzymes, galactose oxidase, an extracellular enzyme, the cytosolic, Cu/Zn superoxide dismutase and cytochrome oxidase, has also been established. The synthesis of galactose oxidase protein (haloenzyme plus apo-enzyme) is independent of copper concentration. Cells grown in copper-free medium (< 10 nM copper) excrete normal amounts of galactose oxidase as an apoprotein. At medium copper levels below 5 μM, new cultures contain enough total copper to enable the limited number of cells to attain sufficient intracellular copper to support hologalactose oxidase production. As a result of cell division, however, the amount of copper available per cell drops to a threshold of approx. 10 ng/mg below which point only apogalactose oxidase is secreted. Above 5 μM medium copper, holoenzyme secretion is maintained throughout cell growth.The levels of the Cu/Zn superoxide dismutase respond differently in that the protein itself apparently is synthesized in only limited amounts in copper-depleted cells. Total cellular superoxide dismutase activity is maintained under such conditions by an increase in activity associated with the mitochondrial, CN?-insensitive, manganese form of this enzyme. Cells grown at 10 μM copper shown 83% of their superoxide dismutase activity to be contributed by the Cu/Zn form compared to a 17% contribution to the total activity in cells grown at 30 nM copper, indicating that the biosynthesis of the Cu/Zn and Mn-containing enzymes is coordinated. The data show that the level of copper modulates the synthesis of the cytosolic superoxide dismutase. In contrast, the cytochrome oxidase activity of D. dendroides is independent of cellular copper levels obtainable. Thus, the data also suggest that these three enzymes utilize different cellular copper pools. As cells are depleted of copper by cell division, the available copper is used to maintain Cu/Zn superoxide dismutase and cytochrome oxidase activity; at very low levels of copper, only the latter activity is maintained. The induction of the manganisuperoxide dismutase in copper-depleted cells should have practical value in the isolation of this protein.  相似文献   

20.
BackgroundMitochondrial dysfunction is a crucial mechanism by which cisplatin, a potent chemotherapeutic agent, causes nephrotoxicity where mitochondrial electron transport complexes are shifted mostly toward imbalanced reactive oxygen species versus energy production. In the present study, the protective role of tempol, a membrane-permeable superoxide dismutase mimetic agent, was evaluated on mitochondrial dysfunction and the subsequent damage induced by cisplatin nephrotoxicity in mice.ConclusionThis study highlights the potential role of tempol in inhibiting cisplatin-induced nephrotoxicity without affecting its antitumor activity via amelioration of oxidative stress and mitochondrial dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号