首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven new triterpenoid saponins (1-7), have been isolated and elucidated from the roots of Gypsophila oldhamiana together with five known triterpenoid saponins (8-12). These saponins which could be classified into three series: 3-O-monoglucosides (1, 8, 9), 28-O-monoglucosides (2-4, 12) and 3, 28-O-bidesmosides (5-7, 10, 11), have been evaluated for their alpha-glucosidase inhibition activity. As a result, the preliminary structure-activity relationships were discussed based on the position of sugar linkage attached to the aglycone, and 28-O-monoglucosides 2-4 and 12 showed significant inhibitory activities on alpha-glucosidase.  相似文献   

2.
Two new triterpenoid saponins were isolated from the rools of Hemsleya penxianensis var. gulinensis together with seven known saponins oleanolic acid 28-O-β-D-glucopyranoside (1), oleanolic acid 3-O-β-D-glucuropyranoside(3), 3-O-β-D-glucuropyranosyl-oleanolic acid-28-O-α-L-arabinopyranoside(4).  相似文献   

3.
Chenopodium quinoa Willd. is a valuable food source which has gained importance in many countries of the world. The plant contains various bitter-tasting saponins which present an important antinutritional factor. Various triterpene saponins have been reported in C. quinoa including both monodesmosidic and bidesmosidic triterpene saponins of oleanolic acid, hederagenin, phytolaccagenic acid, and serjanic acid as the major aglycones and other aglycones as 3β-hydroxy-23-oxo-olean-12-en-28-oic acid, 3β-hydroxy-27-oxo-olean-12-en-28-oic acid, and 3β, 23α, 30β-trihydroxy-olean-12-en-28-oic acid. A tridesmosidic saponin of hederagenin has also been reported. Here we review the occurrence, analysis, chemical structures, and biological activity of triterpene saponins of C. quinoa. In particular, the mode of action of the mono- and bidesmosidic triterpene saponins and aglycones are discussed.  相似文献   

4.
Triterpene saponins from Chenopodium quinoa Willd   总被引:3,自引:0,他引:3  
Twenty triterpene saponins (1-20) have been isolated from different parts of Chenopodium quinoa (flowers, fruits, seed coats, and seeds) and their structures have been elucidated by analysis of chemical and spectroscopic data including 1D- and 2D-NMR. Four compounds (1-4) were identified: 3beta-[(O-beta-d-glucopyranosyl-(1-->3)-alpha-l-arabinopyranosyl)oxy]-23-oxo-olean-12-en-28-oic acid beta-d-glucopyranoside (1), 3beta-[(O-beta-d-glucopyranosyl-(1-->3)-alpha-l-arabinopyranosyl)oxy]-27-oxo-olean-12-en-28-oic acid beta-d-glucopyranoside (2), 3-O-alpha-l-arabinopyranosyl serjanic acid 28-O-beta-d-glucopyranosyl ester (3), and 3-O-beta-d-glucuronopyranosyl serjanic acid 28-O-beta-d-glucopyranosyl ester (4). The following known compounds have not previously been reported as saponin constituents from the flowers and the fruits of this plant: two bidesmosides of serjanic acid (5,6), four bidesmosides of oleanolic acid (7-10), five bidesmosides of phytolaccagenic acid (11-15), four bidesmosides of hederagenin (16-19), and one bidesmoside of 3beta,23,30-trihydroxy olean-12-en-28-oic acid (20). The cytotoxicity of these saponins and their aglycones was tested in HeLa cells. Induction of apoptosis in Caco-2 cells by bidesmosidic saponins 1-4 and their aglycones I-III was determined by flow cytometric DNA analysis. The saponins with an aldehyde group were most active. The relationships between structure and cytotoxic activity of saponins and their aglycones are discussed.  相似文献   

5.
Seven new triterpenoid saponins, randiasaponins I (1), II (2), III (3), IV (4), V (5), VI (6) and VII (7) as well as two known ones, ilexoside XXVII (8) and ilexoside XXXVII (9), were isolated from the methanolic extract of the leaves of Randia formosa. The structures of the new saponins were established as 3-O-alpha-L-arabinopyranosyl-3 beta,19 alpha,23-trihydroxyursa-12,20(30)-dien-28-oic acid 28-beta-D-glucopyranosyl ester (1), 3-O-beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl rotundic acid (2), 3-O-beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl pomolic acid 28-beta-D-glucopyranosyl ester (3), 3-O-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl pomolic acid 28-beta-D-glucopyranosyl ester (4), 3-O-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl siaresinolic acid 28-beta-D-glucopyranosyl ester (5), 3-O-alpha-L-arabinopyranosyl ilexosapogenin A 28-beta-D-glucopyranosyl ester (6), and 3-O-beta-D-glucopyranosyl ilexosapogenin A 28-beta-D-glucopyranosyl ester (7), based on spectral and chemical evidence. Besides the saponins, two common flavonoids kaempferol 3-O-rutinoside and rutin were also isolated.  相似文献   

6.
The saponin fraction from the ethanolic extracts of the root of Ilex pubescens Hook. et Arn. (Ilexaceae) was found to exhibit potent anti-inflammatory effects on carrageenan-induced paw edema in rats. Two novel triterpene saponins, pubescenosides C and D (1 and 2, resp.), together with five known saponins were isolated from this saponin fraction. The structures of 1 and 2 were elucidated as (20beta)-3-O-[beta-D-glucopyranosyl-(1-->2)-beta-D-xylopyranosyl]ursa-12,18-dien-28-oic acid 28-O-beta-D-glucopyranosyl ester, and (20beta)-3-O-[alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->2)-beta-D-xylopyranosyl]ursa- 12,18-dien-28-oic acid 28-O-beta-D-glucopyranosyl ester, respectively, on the basis of chemical and spectroscopic data. Five known saponins isolated from the saponin fraction were identified as ilexsaponin B(1), B(2), B(3), A(1), and chikusetsusaponin IV(a).  相似文献   

7.
Five triterpenoid saponins, caryocarosides II-22 (3), III-22 (4), II-23 (5), III-23 (6), and II-24 (7), have been isolated from the methanol extract of the stem bark of Caryocar villosum, along with two known saponins (1-2). The seven saponins are glucuronides of hederagenin (II) or bayogenin (III). Caryocaroside II-24 (7) is an unusual galloyl ester saponin acylated on the sugar chain attached to C-28, the 3-O-alpha-L-rhamnopyranosyl-(1-->3)-beta-D-galactopyranosyl-(1-->3)-beta-D-glucuronopyranosyl hederagenin-28-O-[2-O-galloyl-beta-D-glucopyranosyl] ester. The structures of the saponins were established on the basis of extensive NMR ((13)C, (1)H, COSY, TOCSY, HSQC, HMBC and ROESY) and ESI-MS studies. The cytotoxic activity of saponins 2 and 3 was evaluated in vitro against human keratinocytes. The DOPA-oxidase inhibition and the lipolytic activities were evaluated ex vivo using an explant of human adipose tissue.  相似文献   

8.
To investigate saponins from the roots of Pulsatilla cernua (Thunb.) Bercht. et Opiz., two new compounds together with five known triterpenoid saponins were isolated. The structures of the two new triterpenoid saponins, named cernuasides A and B, were elucidated as 3-O-[β-D-xylopyranosyl(1→2)]-[α-L-rhamnopyranosyl(1→4)]-α-Larabinopyranosyl hederagenin 28-O-β-D-glucopyranosyl ester (compound 1) and 3-O-[α-L-arabinopyranosyl(1→3)]-[α-L-rhamnopyranosyl (1→2)]-α-L-arabinopyranosyl hederagenin 28-O-β-D-glucopyranosyl ester (compound 2) by 1D, 2D-NMR techniques, ESIMS analysis, as well as chemical methods.  相似文献   

9.
To investigate saponins from the roots of Pulsatilla cernua (Thunb.) Bercht. et Opiz., two new compounds together with five known triterpenoid saponins were isolated. The structures of the two new triterpenoid saponins, named cernuasides A and B, were elucidated as 3-O-[β-D-xylopyranosyl(1→2)]-[α-L-rhamnopyranosyl(1→4)]-α-Larabinopyranosyl hederagenin 28-O-β-D-glucopyranosyl ester (compound 1) and 3-O-[α-L-arabinopyranosyl(1→3)]-[α-L-rhamnopyranosyl (1→2)]-α-L-arabinopyranosyl hederagenin 28-O-β-D-glucopyranosyl ester (compound 2) by 1D, 2D-NMR techniques, ESIMS analysis, as well as chemical methods.  相似文献   

10.
The presence of saponins and the molluscicidal activity of the roots, leaves, seeds and fruits of Swartzia langsdorffii Raddi (Leguminosae) against Biomphalaria glabrata adults and eggs were investigated. The roots, seeds and fruits were macerated in 95% ethanol. These extracts exerted a significant molluscicidal activity against B. glabrata, up to a dilution of 100 mg/l. Four mixtures (A2, B2, C and D) of triterpenoid oleanane type saponins were chromatographically isolated from the seed and fruit extracts. Two known saponins (1 and 2) were identified as beta-D-glucopyranosyl-[alpha-L-rhamnopyranosyl-(1->3)- beta-D-glucuronopyranosyl-(1->3)]-3beta-hydroxyolean-12-ene-28 -oate, and beta-D-glucopyranosyl-(1->3)-beta-D-glucuronopyranosyl-(1 ->3)]-3beta-hydroxyolean-12-ene-28-oate, respectively. These two saponins were present in all the mixtures, together with other triterpenoid oleane type saponins, which were shown to be less polar, by reversed-phase HPLC. The saponin identifications were based on spectral evidence, including H- H two-dimensional correlation spectroscopy, nuclear Overhauser and exchange spectroscopy, heteronuclear multiple quantum coherence, and heteronuclear multiple-bond connectivity experiments. The toxicity of S. langsdorffii saponins to non-target organisms was prescreened by the brine shrimp lethality test.  相似文献   

11.
Guo S  Kenne L 《Phytochemistry》2000,55(5):419-428
Eight new triterpenoid saponins were isolated from a bark extract of Quillaja saponaria Molina by silica and reverse phase chromatography. The saponins were characterized by spectroscopic data and chemical methods as phytolaccagenic acid, 22beta-hydroxy-quillaic acid, and echinocystic acid substituted with different oligosaccharides at C-3 and C-28. The O-4 of the fucosyl residue in the 28-O-oligosaccharide was substituted with either acetyl, (S)-2-methylbutanoyl, or (3S,4S)-3-hydroxy-4-methylhexanoyl groups.  相似文献   

12.
《Phytochemistry》1987,26(5):1487-1490
Two new bisglycosidic triterpenoid saponins were isolated from the ethanolic extract of the aerial parts of Fagonia indica. They were characterized as 23,28-di-O-β-D-glucopyranosyltaraxer-20-en-28-oic acid and 3β,28-di-O-β-D-glucopyr acid. Furthermore, the conversion of the aglycone to 3β,23-dihydroxy-28,20β-taraxastonolide, nahagenin, during the acidic hydrolysis of the new saponins was studied.  相似文献   

13.
S K Nigam  X C Li  D Z Wang  G Misra  C R Yang 《Phytochemistry》1992,31(9):3169-3172
Two new triterpenoidal saponins, butyrosides A and B, were isolated from the seeds of Madhuca butyracea, along with two known saponins, Mi-saponin A and 16 alpha-hydroxy Mi-saponin A. On the basis of chemical and spectroscopic evidence, the structures of butyrosides A and B were established to be 3-O-beta-D-glucopyranosyl protobassic acid 28-O-beta-D-apiofuranosyl(1----3)-beta-D-xylopyranosyl (----4)-alpha-L-rhamnopyranosyl(1----2)-alpha-L-arabinopyranoside and 3-O-beta-D-glucopyranosyl 16 alpha-hydroxy protobassic acid 28-O-beta-D-apiofuranosyl(1----3)-beta-D-xylopyranosyl (1----4)-alpha-L-rhamnopyranosyl(1----2)-alpha-L-arabinopyranoside , respectively.  相似文献   

14.
Six new triterpenoid saponins have been isolated from the stem bark of Elattostachys apetala together with four known triterpenoid saponins. Three of these new compounds are glycosides of a newly described genin, 29-hydroxyhederagenin (1). On the basis of spectral evidence, the structures of the new saponins were concluded to be alpha-hederin 28-O-[alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl] ester (2), sapindoside B 28-O-[alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl] ester (3), 3-O-beta-D-xylopyranosyl astrantiasaponin VII (4), 3-O-[alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl]-28-O-[beta-D-glucopyranosyl-(1-->2)-[beta-D-glucopyranosyl-(1-->6)]-beta-D-glucopyranosyl]-29-hydroxyhederagenin (5), 3-O-[alpha-L-arabinopyranosyl-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl]-28-O-[beta-D-glucopyranosyl(1-->2)-[beta-D-glucopyranosyl(1-->6)]-beta-D-glucopyranosyl]-29-hydroxyhederagenin (6), and 3-O-[beta-D-xylopyranosyl-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl]-28-O-[beta-D-glucopyranosyl-(1-->2)-beta-D-gluco pyranosyl-(1-->6)]-beta-D-glucopyranosyl]-29-hydroxyhederagenin (7).  相似文献   

15.
Camellidins,Antifungal Saponins Isolated from Camellia japonica   总被引:1,自引:0,他引:1  
Two triterpenoid saponins were isolated from an aqueous or a methanolic extract of camellia (Camellia japonica) leaf. They had an antifungal activity characterized by abnormal germination of conidia. These saponins were composed of 3βhydroxy-18β-acetoxy-28-norolean-12-en-16-one or 3β, 8β-dihydroxy-28-norolean-12-en-16-one as aglycon, and d-glucuronic acid, dglucose and two moles of dgalactose as the sugar moiety. The authors have named these new saponins “Camellidin,” which might have value for studies in the fields of phytopathology and biochemistry.  相似文献   

16.
Five 3-O-glucuronide triterpene saponins (1-5) were isolated from the stem bark of Bersama engleriana Gurke along with two known saponins, polyscias saponin C and aralia saponin 15, and one major C-glycoside xanthone, mangiferin. The structures of the saponins were established mainly by means of spectroscopic methods (one- and two-dimensional NMR spectroscopy as well as FAB-, HRESI-mass spectrometry) as 3-O-[beta-D-glucopyranosyl-(1-->2)-beta-D-glucuronopyranosyl]-28-O-[beta-D-glucopyranosyl]-betulinic acid (1), 3-O-[beta-D-glucopyranosyl-(1-->2)-[beta-D-galactopyranosyl-(1-->3)]-beta-D-glucuronopyranosyl]-oleanolic acid (2), 3-O-[beta-D-glucopyranosyl-(1-->3)-beta-D-glucuronopyranosyl]-28-O-[beta-D-xylopyranosyl-(1-->6)-beta-d-glucopyranosyl]-oleanolic acid (3), 3-O-[beta-D-galactopyranosyl-(1-->3)-beta-D-glucuronopyranosyl]-28-O-[beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl]-oleanolic acid (4), and 3-O-[beta-d-glucopyranosyl-(1-->3)-beta-D-galactopyranosyl-(1-->3)-beta-D-glucuronopyranosyl]-28-O-[beta-d-xylopyranosyl-(1-->6)-beta-D-glucopyranosyl]-oleanolic acid (5).  相似文献   

17.
古蔺雪胆中的新三萜皂苷   总被引:5,自引:1,他引:4  
从采自四川汉源县的古蔺雪胆(Hemsleya penxianensis var.gulinensiks)中分到9个三萜皂苷化合物,通过化学反应和光谱方法鉴定了它们的结构。其中7个为已知化合物,分别为齐墩果酸-28-O-β-D-比喃葡萄糖苷(1),3-O-β-D-吡喃葡萄糖醛基齐墩果酸苷(3),3-O-β-D-吡喃葡萄糖醛基—齐墩果酸—28-O-α-L-吡喃阿拉伯糖苷(4),3-O-β-D-吡喃葡萄糖醛基—齐墩果酸—28-O-β-D-吡喃葡萄糖苷(5),3-O-α-L-阿拉伯糖基—(1→3)—β—D-吡喃葡萄糖醛基—齐墩果酸—28—O—β—D—吡喃葡萄糖苷(6),3—O—(6′—丁酯)—β-D-吡喃葡萄糖醛基—齐墩果酸—28-O-α-L-阿拉伯糖苷(7),3-O-(6′-丁酯)—β—D吡喃葡萄糖醛基—齐墩果酸—28-O-β-D-吡喃葡萄糖苷(8)。两个新化合物,即雪胆皂苷A(2)和雪胆皂苷B(9)。  相似文献   

18.
Two new triterpene saponins C and D have been isolated from the aerial parts of Polygala japonica Houtt. Their molecular formulas: C42H68O15 were structural isomers of each other. Acid hydrolysis of the two saponins all produced a sapogenin (2a, 3a, 24-trihydroxyo-lean-12-ene-28-oic acid) and D-glucoses. But only the saponin D could be hydrolyzed in the alkaline solution, the products were identical with those from acid hydrolysis. Their structures have been established by means of 1HNMR,13CNMR and MS as 3-O-[β-D-glucopyranosyl(l→2)β-D-glucopyranosyl] 2α, 3α, 24-trihydroxyolean-12-ene-28-oic acid, 28-O-[β-D-glucopy-ranosyl (1→2)-β-D-glucopyranosyl] 2α, 3α, 24-trihydroxyolean-12-ene-28-oic acid.  相似文献   

19.
Two new triterpenoid saponins, 3-O-{[beta-D-glucopyranosyl-(1-->2)]-[alpha-L-arabinopyranosyl-(1- ->3)]- alpha-L-arabinopyranosyl}-ursolic acid-28-O-[beta-D-glucopyranosyl] ester (indicasaponin A), 3-O-{[beta-D-glucopyranosyl-(1-->2)]-[alpha-L-arabinopyranosyl-(1- ->3)]- alpha-L-arabinopyranosyl}-oleanolic acid-28-O-[beta-D-glucopyranosyl] ester (indicasaponin B) and two known triterpenoid saponins, 3-O-[beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl]-ur solic acid-28-O-[beta-D-glucopyranosyl] ester, 3-O-[beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl]-olean olic acid-28-O-[beta-D-glucopyranosyl] ester have been isolated from Fagonia indica. The structures were determined primarily by NMR spectroscopy. The assignment of NMR signals was performed by means of 1H-1H COSY, NOESY, ROESY, TOCSY, HMQC and HMBC experiments.  相似文献   

20.
Two New Saponins from Lysimachia capillipes Hemsl.   总被引:1,自引:0,他引:1  
To investigate the saponins from whole plants of Lysimachia capillipes Hemsl., two new saponins, named capilliposide E (1) and capilliposide F (2), were isolated. The structures of the new sa ponins were elucidated as 3 β, 22α-dihydroxy- 16α-acetat-28→ 13 -lactone-oleanane-3 -O- [β-D-glucopyranosyl(1→2)-α-L-arabinpyranoyl]-22-O-β-D-glucopyranoside (1) and 3 β, 22α-dihydroxy- 16α-acetat-28→ 13-1actone-oleanane-3-O- { [β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl-(1→4)]-α-L-arabinpyranoyl }-22-O-βD-glucopyranoside (2). The structures of these compounds were determined by 1D- and 2D-NMR, MS techniques, and chemical methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号