首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Directional migration moves cells rapidly between points, whereas random migration allows cells to explore their local environments. We describe a Rac1 mechanism for determining whether cell patterns of migration are intrinsically random or directionally persistent. Rac activity promoted the formation of peripheral lamellae that mediated random migration. Decreasing Rac activity suppressed peripheral lamellae and switched the cell migration patterns of fibroblasts and epithelial cells from random to directionally persistent. In three-dimensional rather than traditional two-dimensional cell culture, cells had a lower level of Rac activity that was associated with rapid, directional migration. In contrast to the directed migration of chemotaxis, this intrinsic directional persistence of migration was not mediated by phosphatidylinositol 3'-kinase lipid signaling. Total Rac1 activity can therefore provide a regulatory switch between patterns of cell migration by a mechanism distinct from chemotaxis.  相似文献   

2.
The three-dimensional positions of immune cells can be tracked in live tissues precisely as a function of time using two-photon microscopy. However, standard methods of analysis used in the field and experimental artifacts can bias interpretations and obscure important aspects of cell migration such as directional migration and non-Brownian walk statistics. Therefore, methods were developed for minimizing drift artifacts, identifying directional and anisotropic (asymmetric) migration, and classifying cell migration statistics. These methods were applied to describe the migration statistics of CD8+ T cells in uninflamed lymph nodes. Contrary to current models, CD8+ T cell statistics are not well described by a straightforward persistent random walk model. Instead, a model in which one population of cells moves via Brownian-like motion and another population follows variable persistent random walks with noise reproduces multiple statistical measures of CD8+ T cell migration in the lymph node in the absence of inflammation.  相似文献   

3.
Cell movement biased by a chemical gradient, or chemotaxis, coordinates the recruitment of cells and collective migration of cell populations. During wound healing, chemotaxis of fibroblasts is stimulated by platelet-derived growth factor (PDGF) and certain other chemoattractants. Whereas the immediate PDGF gradient sensing response has been characterized previously at the level of phosphoinositide 3-kinase (PI3K) signaling, the sensitivity of the response at the level of cell migration bias has not yet been studied quantitatively. In this work, we used live-cell total internal reflection fluorescence microscopy to monitor PI3K signaling dynamics and cell movements for extended periods. We show that persistent and properly aligned (i.e., high-fidelity) fibroblast migration does indeed correlate with polarized PI3K signaling; accordingly, this behavior is seen only under conditions of high gradient steepness (>10% across a typical cell length of 50 μm) and a certain range of PDGF concentrations. Under suboptimal conditions, cells execute a random or biased random walk, but nonetheless move in a predictable fashion according to the changing pattern of PI3K signaling. Inhibition of PI3K during chemotaxis is accompanied by loss of both cell-substratum contact and morphological polarity, but after a recovery period, PI3K-inhibited fibroblasts often regain the ability to orient toward the PDGF gradient.  相似文献   

4.
Current models used in our laboratory to assess the migration and traction of a population of cells within biopolymer gels are extended to investigate temporal changes in these parameters during compaction of mechanically constrained gels. The random cell migration coefficient, micro (t) is calculated using a windowing technique by regressing the mean-squared displacement of cells tracked at high magnification in three dimensions with a generalized least squares algorithm for a subset of experimental time intervals, and then shifting the window interval-by-interval until all time points are analyzed. The cell traction parameter, tau(0)(t), is determined by optimizing the solution of our anisotropic biphasic theory to tissue equivalent compaction. The windowing technique captured simulated sinusoidal and step changes in cell migration superposed on a persistent random walk in simulated cell movement. The optimization software captured simulated time dependence of compaction on cell spreading. Employment of these techniques on experimental data using rat dermal fibroblasts (RDFs) and human foreskin fibroblasts (HFFs) demonstrated that these cells exhibit different migration-traction relationships. Rat dermal fibroblast migration was negatively correlated to traction, suggesting migration was not the driving force for compaction with these cells, whereas human foreskin fibroblast migration was positively correlated to traction.  相似文献   

5.
Cell migration is modulated by regulatory molecules such as growth factors, oncogenes, and the tumor suppressor PTEN. We previously described inhibition of cell migration by PTEN and restoration of motility by focal adhesion kinase (FAK) and p130 Crk-associated substrate (p130(Cas)). We now report a novel pathway regulating random cell motility involving Shc and mitogen-activated protein (MAP) kinase, which is downmodulated by PTEN and additive to a FAK pathway regulating directional migration. Overexpression of Shc or constitutively activated MEK1 in PTEN- reconstituted U87-MG cells stimulated integrin- mediated MAP kinase activation and cell migration. Conversely, overexpression of dominant negative Shc inhibited cell migration; Akt appeared uninvolved. PTEN directly dephosphorylated Shc. The migration induced by FAK or p130(Cas) was directionally persistent and involved extensive organization of actin microfilaments and focal adhesions. In contrast, Shc or MEK1 induced a random type of motility associated with less actin cytoskeletal and focal adhesion organization. These results identify two distinct, additive pathways regulating cell migration that are downregulated by tumor suppressor PTEN: one involves Shc, a MAP kinase pathway, and random migration, whereas the other involves FAK, p130(Cas), more extensive actin cytoskeletal organization, focal contacts, and directionally persistent cell motility. Integration of these pathways provides an intracellular mechanism for regulating the speed and the directionality of cell migration.  相似文献   

6.
 A generalized transport model is derived for cell migration in an anisotropic environment and is applied to the specific cases of biased cell migration in a gradient of a stimulus (taxis; e.g., chemotaxis or haptotaxis) or along an axis of anisotropy (e.g., contact guidance). The model accounts for spatial or directional dependence of cell speed and cell turning behavior to predict a constitutive cell flux equation with drift velocity and diffusivity tensor (termed random motility tensor) that are explicit functions of the parameters of the underlying random walk model. This model provides the connection between cell locomotion and the resulting persistent random walk behavior to the observed cell migration on longer time scales, thus it provides a framework for interpreting cell migration data in terms of underlying motility mechanisms. Received: 8 April 1999  相似文献   

7.
Lamellipodia are sheet-like, leading edge protrusions in firmly adherent cells that contain Arp2/3-generated dendritic actin networks. Although lamellipodia are widely believed to be critical for directional cell motility, this notion has not been rigorously tested. Using fibroblasts derived from Ink4a/Arf-deficient mice, we generated a stable line depleted of Arp2/3 complex that lacks lamellipodia. This line shows defective random cell motility and relies on a filopodia-based protrusion system. Utilizing a microfluidic gradient generation system, we tested the role of Arp2/3 complex and lamellipodia in directional cell migration. Surprisingly, Arp2/3-depleted cells respond normally to shallow gradients of PDGF, indicating that lamellipodia are not required for fibroblast chemotaxis. Conversely, these cells cannot respond to a surface-bound gradient of extracellular matrix (haptotaxis). Consistent with this finding, cells depleted of Arp2/3 fail to globally align focal adhesions, suggesting that one principle function of lamellipodia is to organize cell-matrix adhesions in a spatially coherent manner.  相似文献   

8.
Embryo morphogenesis is driven by dynamic cell behaviors, including migration, that are coordinated with fate specification and differentiation, but how such coordination is achieved remains poorly understood. During zebrafish gastrulation, endodermal cells sequentially exhibit first random, nonpersistent migration followed by oriented, persistent migration and finally collective migration. Using a novel transgenic line that labels the endodermal actin cytoskeleton, we found that these stage-dependent changes in migratory behavior correlated with changes in actin dynamics. The dynamic actin and random motility exhibited during early gastrulation were dependent on both Nodal and Rac1 signaling. We further identified the Rac-specific guanine nucleotide exchange factor Prex1 as a Nodal target and showed that it mediated Nodal-dependent random motility. Reducing Rac1 activity in endodermal cells caused them to bypass the random migration phase and aberrantly contribute to mesodermal tissues. Together, our results reveal a novel role for Nodal signaling in regulating actin dynamics and migration behavior, which are crucial for endodermal morphogenesis and cell fate decisions.  相似文献   

9.
Cell migration plays a pivotal role in many physiologically important processes such as embryogenesis, wound-healing, immune defense, and cancer metastasis. Although much effort has been directed toward motility of individual cells, the mechanisms underpinning collective cell migration remain poorly understood. Here we develop a collective motility model that incorporates cell mechanics and persistent random motions of individual cells to study coherent migratory motions in epithelial-like monolayers. This model, in absence of any external chemical signals, is able to explain coordinate rotational motion seen in systems ranging from two adherent cells to multicellular assemblies. We show that the competition between the active persistent force and random polarization fluctuation is responsible for the robust rotation. Passive mechanical coupling between cells is necessary but active chemical signaling between cells is not. The predicted angular motions also depend on the geometrical shape of the underlying substrate: cells exhibit collective rotation on circular substrates, but display linear back-and-forth motion on long and narrow substrates.  相似文献   

10.
Bo Li  Sean?X. Sun 《Biophysical journal》2014,107(7):1532-1541
Cell migration plays a pivotal role in many physiologically important processes such as embryogenesis, wound-healing, immune defense, and cancer metastasis. Although much effort has been directed toward motility of individual cells, the mechanisms underpinning collective cell migration remain poorly understood. Here we develop a collective motility model that incorporates cell mechanics and persistent random motions of individual cells to study coherent migratory motions in epithelial-like monolayers. This model, in absence of any external chemical signals, is able to explain coordinate rotational motion seen in systems ranging from two adherent cells to multicellular assemblies. We show that the competition between the active persistent force and random polarization fluctuation is responsible for the robust rotation. Passive mechanical coupling between cells is necessary but active chemical signaling between cells is not. The predicted angular motions also depend on the geometrical shape of the underlying substrate: cells exhibit collective rotation on circular substrates, but display linear back-and-forth motion on long and narrow substrates.  相似文献   

11.
Recognition and determination of the following activities of living cancer cells on glass substrates can be greatly facilitated by the use of reflection contrast microscopy: 1. stationary versus translocative motility, 2. migration over/under other cells, 3. actual locomotory activity of cells with a polarized shape usually associated with this type of motility. In addition, reflection contrast is useful for recognizing the presence of fibroblasts in cancer cell populations.  相似文献   

12.
The migration of polymorphonuclear leukocytes from the blood to sites of infection in tissues is a hallmark of the innate immune response. Formylated peptides produced as a byproduct of bacterial protein synthesis are powerful chemoattractants for leukocytes. Formyl peptides bind to two different G protein-coupled receptors (formyl peptide receptor (FPR) and the low affinity formyl peptide receptor-like-1 (FPRL1)) to initiate a signal transduction cascade leading to cell activation and migration. Our analysis of expressed sequences from many cDNA libraries draws attention to the fact that FPRs are widely expressed in nonlymphoid tissues. Here we demonstrate that FPRs are expressed by normal human lung and skin fibroblasts and the human fibrosarcoma cell line HT-1080. The expression on fibroblasts of receptors for bacteria-derived peptides raises questions about the possible function of these receptors in nonleukocyte cells. We studied the function of FPRs on fibroblasts and find that stimulation with fMLP triggers dose-dependent migration of these cells. Furthermore, fMLP induces signal transduction including intracellular calcium flux and a transient increase in F-actin. The fMLP-induced adhesion and motility of fibroblasts on fibronectin require functional protein kinase C and phosphatidylinositol 3-kinase. This first report of a functional formyl peptide receptor in cells of fibroblast origin opens new possibilities for the role of fibroblasts in innate immune responses.  相似文献   

13.
The metastatic spread of malignant neoplasms is associated with active migration of cancer cells. The migration of neoplastic cells during the metastatic process may be affected by various extracellular factors, including chemoattractants, haptotactic signals, electric fields, substrate anisotropy, and cell-to-cell contacts. We examined the effect of homotypic collisions and heterotypic interactions with normal human skin fibroblasts on the motile activity of Walker carcinosarcoma cells. It was found that Walker carcinosarcoma cells moving in a dense population neither show contact inhibition of movement when colliding with one another nor increase their motile activity as a result of contact stimulation of motility. On the other hand, when plated onto the surface of aligned fibroblasts, Walker carcinosarcoma cells migrated mainly along the long axes of underlying fibroblasts as a result of contact guidance. The directional character of movement (but not the speed of migration) of Walker carcinosarcoma cells on the surface of aligned fibroblasts was completely effaced by RGD-containing synthetic peptide at a concentration of 1 mg/ml but not by 5 microM verapamil (selective voltage-gated calcium channel inhibitor) or 10 microM gadolinium chloride (non-specific blocker of mechanosensitive ion channels). The suppression of directional character of migration of tumour cells by RGD-containing peptide was associated with the decrease in the amount of fibronectin macromolecules attached to fibroblasts. This suggests that alignment and anisotropic distribution of fibronectin macromolecules may be responsible for contact guidance of tumour cells moving on the surface of fibroblasts.  相似文献   

14.
Cell migration plays roles in invasion of transformed cells and scattering of embryonic mesenchymal cells into surrounding tissues. We have found that Ig-like Necl-5/Tage4 is up-regulated in NIH3T3 cells transformed by an oncogenic Ras (V12Ras-NIH3T3 cells) and heterophilically trans-interacts with a Ca(2+)-independent Ig-like cell adhesion molecule nectin-3, eventually enhancing their intercellular motility. We show here that Necl-5 furthermore enhances cell migration in a nectin-3-independent manner. Studies using L fibroblasts expressing various mutants of Necl-5, NIH3T3 cells, and V12Ras-NIH3T3 cells have revealed that Necl-5 enhances serum- and platelet-derived growth factor-induced cell migration. The extracellular region of Necl-5 is necessary for directional cell migration, but not for random cell motility. The cytoplasmic region of Necl-5 is necessary for both directional and random cell movement. Necl-5 colocalizes with integrin alpha(V)beta(3) at leading edges of migrating cells. Analyses using an inhibitor or an activator of integrin alpha(V)beta(3) or a dominant negative mutant of Necl-5 have shown the functional association of Necl-5 with integrin alpha(V)beta(3) in cell motility. Cdc42 and Rac small G proteins are activated by the action of Necl-5 and required for the serum-induced, Necl-5-enhanced cell motility. These results indicate that Necl-5 regulates serum- and platelet-derived growth factor-induced cell migration in an integrin-dependent, nectin-3-independent manner, when cells do not contact other cells. We furthermore show here that enhanced motility and metastasis of V12Ras-NIH3T3 cells are at least partly the result of up-regulated Necl-5.  相似文献   

15.
16.
Cell migration is crucial in virtually every biological process and strongly depends on the nature of the surrounding matrix. An assay that enables real-time studies on the effects of defined matrix components and growth factors on cell migration is not available. We have set up a novel, quantitative migration assay, which enables unharmed cells to migrate along a defined matrix. Here, we used this so-called barrier-assay to define the contribution of fibronectin (FN) and Collagen-I (Col-I) to vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and lysophosphatidic acid (LPA)-induced cell migration of endothelial cells (EC) and fibroblasts. In EC, both FN and Col-I stimulated migration, but FN-induced motility was random, while net movement was inhibited. Addition of bFGF and VEGF overcame the effect of FN, with VEGF causing directional movement. In contrast, in 3T3 fibroblasts, FN stimulated motility and this effect was enhanced by bFGF. This motility was more efficient and morphologically completely different compared to LPA stimulation. Strikingly, directional migration of EC was not paralleled by higher amounts of stable microtubules (MT) or an increased reorientation of the microtubule-organizing centre (MTOC). For EC, the FN effect appeared concentration dependent; high FN was able to induce migration, while for fibroblasts both low and high concentrations of FN induced motility. Besides showing distinct responses of the different cells to the same factors, these results address contradictive reports on FN and show that the interplay between matrix components and growth factors determines both pattern and regulation of cell migration. J. Cell. Biochem. 99: 1536-1552, 2006. (c) 2006 Wiley-Liss, Inc.  相似文献   

17.
In fibroblasts and keratocytes, motility is actin dependent, while microtubules play a secondary role, providing directional guidance. We demonstrate here that the motility of glioblastoma cells is exceptional, in that it occurs in cells depleted of assembled actin. Cells display persistent motility in the presence of actin inhibitors at concentrations sufficient to fully disassemble actin. Such actin independent motility is characterized by the extension of cell protrusions containing abundant microtubule polymers. Strikingly, glioblastoma cells exhibit no motility in the presence of microtubule inhibitors, at concentrations that disassemble labile microtubule polymers. In accord with an unconventional mode of motility, glioblastoma cells have some unusual requirements for the Rho GTPases. While Rac1 is required for lamellipodial protrusions in fibroblasts, expression of dominant negative Rac1 does not suppress glioblastoma migration. Other GTPase mutants are largely without unique effect, except dominant positive Rac1-Q61L, and rapidly cycling Rac1-F28L, which substantially suppress glioblastoma motility. We conclude that glioblastoma cells display an unprecedented mode of intrinsic motility that can occur in the absence of actin polymer, and that appears to require polymerized microtubules.  相似文献   

18.
The Locomotion of Mouse Fibroblasts in Tissue Culture   总被引:12,自引:2,他引:10       下载免费PDF全文
Time-lapse cinematography was used to investigate the motion of mouse fibroblasts in tissue culture. Observations over successive short time intervals revealed a tendency for the cells to persist in their direction of motion from one 2.5 hr time interval to the next. Over 5.0-hr time intervals, however, the direction of motion appeared random. This fact suggested that D, the diffusion constant of a random walk model, might serve to characterize cellular motility if suitably long observation times were used. We therefore investigated the effect of “persistence” on the pure random walk model, and we found theoretically and confirmed experimentally that the motility of a persisting cell could indeed be characterized by an augmented diffusion constant, D*. A method for determining confidence limits on D* was also developed. Thus a random walk model, modified to comprehend the persistence effect, was found to describe the motion of fibroblasts in tissue culture and to provide a numerical measure of cellular motility.  相似文献   

19.
Chemotaxis is a cellular sensing mechanism that guides immune cells to sites of infection and leads fibroblasts to sites of injury. Here, we show in migrating primary dendritic cells and fibroblasts that the leading edge is not a uniform signaling entity, but instead consists of independent coupling units in which transient activation of PI3-kinase links to local lamellipod extension and small discrete turns in the direction of migration. These findings led to a model in which global cell polarization is independent from the chemotaxis mechanism. In this model, chemotaxis does not require spatial integration but is instead a stochastic process in which each receptor binding event within the leading edge triggers a local lamellipod extension and a small turn in the direction of migration. We show that this model and a derived "compass parameter" are sufficient to simulate the observed random migration, biased random walk, and persistent chemotactic behaviors of eukaryotic cells.  相似文献   

20.
Mechanical compliance is emerging as an important environmental cue that can influence certain cell behaviors, such as morphology and motility. Recent in vitro studies have shown that cells preferentially migrate from less stiff to more stiff substrates; however, much of this phenomenon, termed durotaxis, remains ill-defined. To address this problem, we studied the morphology and motility of vascular smooth muscle cells on well-defined stiffness gradients. Baselines for cell spreading, polarization, and random motility on uniform gels with moduli ranging from 5 to 80 kPa were found to increase with increasing stiffness. Subsequent analysis of the behavior of vascular smooth muscle cells on gradient substrata (0-4 kPa/100 μm, with absolute moduli of 1-80 kPa) demonstrated that the morphology on gradient gels correlated with the absolute modulus. In contrast, durotaxis (evaluated quantitatively as the tactic index for a biased persistent random walk) and cell orientation with respect to the gradient both increased with increasing magnitude of gradient, but were independent of the absolute modulus. These observations provide a foundation for establishing quantitative relationships between gradients in substrate stiffness and cell response. Moreover, these results reveal common features of phenomenological cell response to chemotactic and durotactic gradients, motivating further mechanistic studies of how cells integrate and respond to multiple complex signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号