首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mutant h-lysozyme, W64CC65A, with Trp64 and Cys65 replaced by Cys and Ala, respectively, was secreted by yeast and purified. Peptide mapping confirmed that W64CC65A contained a nonnative Cys64-Cys81 bond and three native disulfide bonds. The mutant had 2% of the lytic activity of the wild-type lysozyme. The midpoint concentration of the guanidine hydrochloride denaturation curve, the [D]1/2, was 2.7 M for W64CC65A at pH 3.0 and 25 degrees C, whereas the [D]1/2 for the wild-type h-lysozyme was 2.9 M. These results show that the W64CC65A protein is a compactly folded molecule. Our previous results, using the mutant C81A, indicate that Cys81 is not required for correct folding and activity, whereas Cys65 is indispensable (Taniyama, Y., Yamamoto, Y., Kuroki, R., and Kikuchi, M. (1990) J. Biol. Chem. 65, 7570-7575). Cys64 substituted for Cys65 in W64CC65A, even though the distance between the alpha-carbons at positions 64 and 81 in the wild-type h-lysozyme is not favorable for forming a disulfide bond. Unlike C81A, the mutant W64CC65/81A, which has the additional substitution of Ala for Cys81, did not fold. These results suggest that the absence of both the Cys64-Cys81 bond and the amino acid residue Trp64 caused the misfolding or destabilization of W64CC65/81A in vivo. It is proposed that the formation of the alternative bond, Cys64-Cys81 is important for the folding of W64CC65A in vivo.  相似文献   

2.
Inaka K  Kanaya E  Kikuchi M  Miki K 《Proteins》2001,43(4):413-419
The three-dimensional structure of a mutant human lysozyme, W64CC65A, in which a non-native disulfide bond Cys64--Cys81 is substituted for the Cys65--Cys81 of the wild type protein by replacing Trp64 and Cys65 with Cys and Ala, respectively, was determined by X-ray crystallography and refined to an R-value of 0.181, using 33,187 reflections at 1.87-A resolution. The refined model of the W64CC65A protein consisted of four molecules, which were related by two noncrystallographic twofold axes and a translation vector. Although no specific structural differences could be observed among these four molecules, the overall B-factors of each molecule were quite different. The overall structure of W64CC65A, especially in the alpha-helical domain, was found to be quite similar to that of the wild type protein. Moreover, the side-chain conformation of the newly formed Cys64--Cys81 bond was quite similar to that of the Cys65--Cys81 bond of the wild-type protein. However, in the beta-sheet domain, the main-chain atoms of the loop region from positions 66-75 could not be determined, and significant structural changes due to the formation of the non-native disulfide bond could be observed. From these results, it is clear that the loop region of the mutant protein does not fold with the specific folding as observed in the wild-type protein.  相似文献   

3.
Human lysozyme is made up of 130 amino acid residues and has four disulfide bonds at Cys6-Cys128, Cys30-Cys116, Cys65-Cys81, and Cys77-Cys95. Our previous results using the Saccharomyces cerevisiae secretion system indicate that the individual disulfide bonds of human lysozyme have different functions in the correct in vivo folding and enzymatic activity of the protein (Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M., and Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967). In this paper, we report the results of experiments that were focused on the roles of Cys65 and Cys81 in the folding of human lysozyme protein in yeast. A mutant protein (C81A), in which Cys81 was replaced with Ala, had almost the same enzymatic activity and conformation as those of the native enzyme. On the other hand, another mutant (C65A), in which Cys65 was replaced with Ala, was not found to fold correctly. These results indicate that Cys81 is not a requisite for both correct folding and activity, whereas Cys65 is indispensable. The mutant protein C81A is seen to contain a new, non-native disulfide bond at Cys65-Cys77. The possible occurrence of disulfide bond interchange during our mapping experiments cannot be ruled out by the experimental techniques presently available, but characterization of other mutant proteins and computer analysis suggest that the intramolecular exchange of disulfide bonds is present in the folding pathway of human lysozyme in vivo.  相似文献   

4.
Arai M  Hamel P  Kanaya E  Inaka K  Miki K  Kikuchi M  Kuwajima K 《Biochemistry》2000,39(12):3472-3479
Human lysozyme has four disulfide bonds, one of which, Cys65-Cys81, is included in a long loop of the beta-domain. A cysteine-scanning mutagenesis in which the position of Cys65 was shifted within a continuous segment from positions 61 to 67, with fixed Cys81, has previously shown that only the mutant W64CC65A, which has a nonnative Cys64-Cys81 disulfide, can be correctly folded and secreted by yeast. Here, using the W64CC65A mutant, we investigated the effects of an alternative disulfide bond on the structure, stability, and folding of human lysozyme using circular dichroism (CD) and fluorescence spectroscopy combined with a stopped-flow technique. Although the mutant is expected to have a different main-chain structure from that of the wild-type protein around the loop region, far- and near-UV CD spectra show that the native state of the mutant has tightly packed side chains and secondary structure similar to that of the wild-type. Guanidine hydrochloride-induced equilibrium unfolding transition of the mutant is reversible, showing high stability and cooperativity of folding. In the kinetic folding reaction, both proteins accumulate a similar burst-phase intermediate having pronounced secondary structure within the dead time of the measurement and fold into the native structure by means of a similar folding mechanism. Both the kinetic refolding and unfolding reactions of the mutant protein are faster than those of the wild-type, but the increase in the unfolding rate is larger than that of the refolding rate. The Gibbs' free-energy diagrams obtained from the kinetic analysis suggest that the structure around the loop region in the beta-domain of human lysozyme is formed after the transition state of folding, and thus, the effect of the alternative disulfide bond on the structure, stability, and folding of human lysozyme appears mainly in the native state.  相似文献   

5.
The production of class A beta-lactamases is a major cause of clinical resistance to beta-lactam antibiotics. Some of class A beta-lactamases are known to have a disulfide bridge. Both narrow spectrum and extended spectrum beta-lactamases of TEM and the SHV enzymes possess a disulfide bond between Cys77 and Cys123, and the enzymes with carbapenem-hydrolyzing activity have a well-conserved disulfide bridge between Cys69 and Cys238. We produced A77C/G123C mutant of the extended-spectrum beta-lactamase Toho-1 in order to introduce a disulfide bond between the cysteine residues at positions 77 and 123. The result of 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) titrations confirmed formation of a new disulfide bridge in the mutant. The results of irreversible heat inactivation and circular dichroism (CD) melting experiments indicated that the disulfide bridge stabilized the enzyme significantly. Though kinetic analysis indicated that the catalytic properties of the mutant were quite similar to those of the wild-type enzyme, E. coli producing this mutant showed drug resistance significantly higher than E. coli producing the wild-type enzyme. We speculate that the stability of the enzymes provided by the disulfide bond may explain the wide distribution of TEM and SHV derivatives and explain how various mutations can cause broadened substrate specificity without loss of stability.  相似文献   

6.
Our previous results using the Saccharomyces cerevisiae secretion system suggest that intramolecular exchange of disulfide bonds occurs in the folding pathway of human lysozyme in vivo (Taniyama, Y., Yamamoto, Y., Kuroki, R., and Kikuchi, M. (1990) J. Biol. Chem. 265, 7570-7575). Here we report on the results of introducing an artificial disulfide bond in mutants with 2 cysteine residues substituting for Ala83 and Asp91. The mutant (C83/91) protein was not detected in the culture medium of the yeast, probably because of incorrect folding. Thereupon, 2 cysteine residues Cys77 and Cys95 were replaced with Ala in the mutant C83/91, because a native disulfide bond Cys77-Cys95 was found not necessary for correct folding in vivo (Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M., and Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967). The resultant mutant (AC83/91) was secreted as two proteins (AC83/91-a and AC83/91-b) with different specific activities. Amino acid and peptide mapping analyses showed that two glutathiones appeared to be attached to the thiol groups of the cysteine residues introduced into AC83/91-a and that four disulfide bonds including an artificial disulfide bond existed in the AC83/91-b molecule. The presence of cysteine residues modified with glutathione may indicate that the non-native disulfide bond Cys83-Cys91 is not so easily formed as a native disulfide bond. These results suggest that the introduction of Cys83 and Cys91 may act to suppress the process of native disulfide bond formation through disulfide bond interchange in the folding of human lysozyme.  相似文献   

7.
Goat alpha-lactalbumin (GLA) contains four tryptophan (Trp) residues and four disulfide bonds. Illumination with near-UV light results in the cleavage of disulfide bridges and in the formation of free thiols. To obtain information about the reaction products, the illuminated protein was carbamidomethylated and digested with trypsin and the peptides were analyzed by mass spectrometry. Peptides containing Cys120Cam, Cys61Cam, or Cys91Cam were detected, as well as two peptides containing a new Cys-Lys cross-link. In one, Cys6 was cross-linked to Lys122, while the cross-link in the second was either a Cys91-Lys79 or Cys73-Lys93 cross-link; however, the exact linkage could not be defined. The results demonstrate photolytic cleavage of the Cys6-Cys120, Cys61-Cys77, and Cys73-Cys91 disulfide bonds. While photolysis of Cys6-Cys120 and Cys73-Cys91 disulfide bonds in GLA has been reported, cleavage of the Cys61-Cys77 disulfide bonds has not been previously detected. To examine the contribution of the individual Trp residues, we constructed the GLA mutants, W26F, W60F, W104F, and W118F, by replacing single Trp residues with phenylalanine (Phe). The substitution of each Trp residue led to less thiol production compared to that for wild-type GLA, showing that each Trp residue in GLA contributed to the photolytic cleavage of disulfide bridges. The specificity was expressed by the nature of the reaction products. No cleavage of the Cys6-Cys120 disulfide bridge was detected when the W26F mutant was illuminated, and no cleavage of the Cys73-Cys91 disulfide bridge was seen following illumination of W26F or W104F. In contrast, Cys61Cam, resulting from the cleavage of the Cys61-Cys77 disulfide bridge, was found following illumination of any of the mutants.  相似文献   

8.
A mutant human lysozyme C77/95A, in which Cys77 and Cys95 are replaced with alanine, has been characterized by 8-fold greater secretion in yeast (Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M., and Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967) and almost the same three-dimensional structure as wild-type human lysozyme (Inaka, K., Taniyama, Y., Kikuchi, M., Morikawa, K., and Matsushima, M. (1991) J. Biol. Chem. 266, 12599-12603). To clarify the molecular features of C77/95A and the reason for its increased secretion in yeast, the stabilities of the mutant C77/95A and the wild-type proteins were examined by guanidine hydrochloride denaturation, and the unfolding-refolding kinetics were determined from circular dichroism and fluorescence stopped-flow measurements. Equilibrium experiments showed that the delta G of unfolding of C77/95A in water was 5.8 kcal/mol less stable than that of the wild-type protein at pH 4.0 and 10 degrees C. The unfolding rate of C77/95A was 4 orders of magnitude faster than that of the wild-type protein whereas the two proteins shared similar refolding rates. The slowly refolding phase of the wild-type protein disappeared in C77/95A, indicating that the disulfide bond affects this phase. These observations show that the disulfide bond Cys77-Cys95 contributes to the stabilization of the folded form of human lysozyme by suppressing the unfolding rate and that the increase in the unfolding rate, or the disappearance of the slowly refolding phase in vitro, could correlate with the increase in secretion efficiency in vivo.  相似文献   

9.
Gene 32 protein (g32P), the replication accessory single-stranded nucleic acid binding protein from bacteriophage T4, contains 1 mol of Zn(II)/mol of protein. Zinc coordination provides structural stability to the DNA-binding core domain of the molecule, termed g32P-(A+B) (residues 22-253). Optical absorption studies with the Co(II)-substituted protein and 113Cd NMR spectroscopy of 113Cd(II)-substituted g32P-(A+B) show that the metal coordination sphere in g32P is characterized by approximately tetrahedral ligand symmetry and ligation by the Cys-S- atoms of Cys77, Cys87, and Cys90. These studies predicted the involvement of a fourth protein-derived non-thiol ligand to complete the tetrahedral complex, postulated to be His81 on the basis of primary structure prediction and modeling [Giedroc, D.P., Johnson, B.A., Armitage, I.M., & Coleman, J.E. (1989) Biochemistry 28, 2410-2418]. To test this model, we have employed site-directed mutagenesis to substitute each of the two histidine residues in g32P (His64 and His81), accompanied by purification and structural characterization of these single-site mutant proteins. We show that g32P's containing any of three substitutions at residue 64 (H64Q, H64N, and H64L) are isolated from Escherichia coli in a Zn(II)-free form [less than or equal to 0.03 g.atom Zn(II)]. All derivatives show extremely weak affinity for the ssDNA homopolymer poly(dT). All are characterized by a far-UV-CD spectrum reduced in negative intensity relative to the wild-type protein. These structural features parallel those found for the known metal ligand mutant Cys87----Ser87 (C87S) g32P. In contrast, g32P-(A+B) containing a substitution of His81 with glutamine (H81Q), alanine (H81A) or cysteine (H81C), contains stoichiometric Zn(II) as isolated and binds to polynucleotides with an affinity comparable to the wild-type g32P-(A+B). Spin-echo 1H NMR spectra recorded for wild-type and H81Q g32P-(A+B) as a function of pH allow the assignment of His81 ring proteins to delta = 6.81 and 6.57 ppm, respectively, at pH 7.8, corresponding to the C and D histidyl protons of 1H-His-g32P-(A+B) [Pan, T., Giedroc, D.P., & Coleman, J.E. (1989) Biochemistry 28, 8828-8832]. These resonances shift downfield as the pH is reduced from 7.8 to 6.6 without metal dissociation, a result incompatible with His81 donating a ligand to the Zn(II) in wild-type g32P. Likewise, Cys81 in Zn(II) H81C g32P is readily reactive with 5,5'-dithiobis(2-nitrobenzoic acid), unlike metal ligands Cys77, Cys87, and Cys90.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The engineered disulfide bridge between residues 21 and 142 of phage T4 lysozyme spans the active-site cleft and can be used as a switch to control the activity of the enzyme (Matsumura, M. & Matthews, B.W., 1989, Science 243, 792-794). In the oxidized form the disulfide increases the melting temperature of the protein by 11 degrees C at pH 2. The crystal structure of this mutant lysozyme has been determined in both the reduced and oxidized forms. In the reduced form, the crystal structure of the mutant is shown to be extremely similar to that of wild type. In the oxidized form, however, the formation of the disulfide bridge causes the alpha-carbons of Cys 21 and Cys 142, on opposite sides of the active-site cleft, to move toward each other by 2.5 A. In association with this movement, the amino-terminal domain of the protein undergoes a rigid-body rotation of 5.1 degrees relative to the carboxy-terminal domain. This rotation occurs about an axis passing through the junction of the amino-terminal and carboxy-terminal domains and is also close to the axis that best fits the apparent thermal motion of the amino-terminal domain seen previously in crystals of wild-type lysozyme. Even though the engineered Cys 21-Cys 142 disulfide links together the amino-terminal and carboxy-terminal domains of T4 lysozyme, it does not reduce the apparent mobility of the one domain relative to the other. The pronounced "hinge-bending" mobility of the amino-terminal domain that is suggested by the crystallographic thermal parameters of wild-type lysozyme persists in the oxidized (and reduced) mutant structures. In the immediate vicinity of the introduced disulfide bridge the mutant structure is more mobile (or disordered) than wild type, so much so that the exact conformation of Cys 21 remains obscure. As with the previously described disulfide bridge between residues 9 and 164 of T4 lysozyme (Pjura, P.E., Matsumura, M., Wozniak, J.A., & Matthews, B.W., 1990, Biochemistry 29, 2592-2598), the engineered cross-link substantially enhances the stability of the protein without making the folded structure more rigid.  相似文献   

11.
Disulfide bonds between the side chains of cysteine residues are the only common crosslinks in proteins. Bovine pancreatic ribonuclease A (RNase A) is a 124-residue enzyme that contains four interweaving disulfide bonds (Cys26-Cys84, Cys40-Cys95, Cys58-Cys110, and Cys65-Cys72) and catalyzes the cleavage of RNA. The contribution of each disulfide bond to the conformational stability and catalytic activity of RNase A has been determined by using variants in which each cystine is replaced independently with a pair of alanine residues. Thermal unfolding experiments monitored by ultraviolet spectroscopy and differential scanning calorimetry reveal that wild-type RNase A and each disulfide variant unfold in a two-state process and that each disulfide bond contributes substantially to conformational stability. The two terminal disulfide bonds in the amino-acid sequence (Cys26-Cys84 and Cys58-Cys110) enhance stability more than do the two embedded ones (Cys40-Cys95 and Cys65-Cys72). Removing either one of the terminal disulfide bonds liberates a similar number of residues and has a similar effect on conformational stability, decreasing the midpoint of the thermal transition by almost 40 degrees C. The disulfide variants catalyze the cleavage of poly(cytidylic acid) with values of kcat/Km that are 2- to 40-fold less than that of wild-type RNase A. The two embedded disulfide bonds, which are least important to conformational stability, are most important to catalytic activity. These embedded disulfide bonds likely contribute to the proper alignment of residues (such as Lys41 and Lys66) that are necessary for efficient catalysis of RNA cleavage.  相似文献   

12.
The three-dimensional structure of a mutant human lysozyme, C77/95A, in which residues Cys77 and Cys95 were replaced by alanine, was determined at 1.8-A resolution by x-ray crystallography. The properties of this mutant protein have been well characterized with respect to its thermal stability and secretion efficiency in a yeast expression system. The overall three-dimensional structure of C77/95A was found to be essentially identical to that of the wild-type human lysozyme, although the coordinates were shifted by more than 0.5 A and the thermal factors of the main-chain atoms were increased in the vicinity of residue 77. The reduction in thermal stability of this mutant has been previously explained by an increase in entropy of the unfolded state. In addition, a packing defect (cavity) produced by the removal of the disulfide bond was detected in the three-dimensional structure of C77/95A. This cavity can also be a reason why the stability of the protein is reduced because the free energy of the folded state could be expected to increase. The increased secretion efficiency cannot be due mainly to the three-dimensional structure, but may possibly be related to some event in the pathway of protein secretion. One of the possibilities might involve molecular flexibilities in the secondary or tertiary structure for lack of one of the disulfide bonds.  相似文献   

13.
In previous site-directed mutagenesis study on thermolysin, mutations which increase the catalytic activity or the thermal stability have been identified. In this study, we attempted to generate highly active and stable thermolysin by combining the mutations so far revealed to be effective. Three mutant enzymes, L144S (Leu144 in the central alpha-helix located at the bottom of the active site cleft is replaced with Ser), G8C/N60C/S65P (Gly8, Asn60, and Ser65 in the N-terminal region are replaced with Cys, Cys, and Pro, respectively, to introduce a disulfide bridge between the positions 8 and 60), and G8C/N60C/S65P/L144S, were constructed by site-directed mutagenesis. In the hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-L-leucine amide (FAGLA) and N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester (ZDFM), the k(cat)/K(m) values of L144S and G8C/N60C/S65P/L144S were 5- to 10-fold higher than that of the wild-type enzyme. The rate constants for thermal inactivation at 70 degrees C and 80 degrees C of G8C/N60C/S65P and G8C/N60C/S65P/L144S decreased to 50% of that of the wild-type enzyme. These results indicate that G8C/N60C/S65P/L144S is more active and stable than the wild-type thermolysin. Thermodynamic analysis suggests that the single mutation of Leu144-->Ser and the triple mutation of Gly8-->Cys, Asn60-->Cys, and Ser65-->Pro are independent.  相似文献   

14.
Trypanosoma brucei, the causative agent of African sleeping sickness, encodes three nearly identical genes for cysteine-homologues of the selenocysteine-containing glutathione peroxidases. The enzymes, which are essential for the parasites, lack glutathione peroxidase activity but catalyse the trypanothione/Tpx (tryparedoxin)-dependent reduction of hydroperoxides. Cys47, Gln82 and Trp137 correspond to the selenocysteine, glutamine and tryptophan catalytic triad of the mammalian selenoenzymes. Site-directed mutagenesis revealed that Cys47 and Gln82 are essential. A glycine mutant of Trp137 had 13% of wild-type activity, which suggests that the aromatic residue may play a structural role but is not directly involved in catalysis. Cys95, which is conserved in related yeast and plant proteins but not in the mammalian selenoenzymes, proved to be essential as well. In contrast, replacement of the highly conserved Cys76 by a serine residue resulted in a fully active enzyme species and its role remains unknown. Thr50, proposed to stabilize the thiolate anion at Cys47, is also not essential for catalysis. Treatment of the C76S/C95S but not of the C47S/C76S double mutant with H2O2 induced formation of a sulfinic acid and covalent homodimers in accordance with Cys47 being the peroxidative active site thiol. In the wild-type peroxidase, these oxidations are prevented by formation of an intramolecular disulfide bridge between Cys47 and Cys95. As shown by MS, regeneration of the reduced enzyme by Tpx involves a transient mixed disulfide between Cys95 of the peroxidase and Cys40 of Tpx. The catalytic mechanism of the Tpx peroxidase resembles that of atypical 2-Cys-peroxiredoxins but is distinct from that of the selenoenzymes.  相似文献   

15.
Sites for Cys substitutions to form a disulfide bond were chosen in subtilisin E from Bacillus subtilis, a cysteine-free bacterial serine protease, based on the structure of aqualysin I of Thermus aquaticus YT-1 (a thermophilic subtilisin-type protease containing two disulfide bonds). Cys residues were introduced at positions 61 (wild-type, Gly) and 98 (Ser) in subtilisin E by site-directed mutagenesis. The Cys-61/Cys-98 mutant subtilisin appeared to form a disulfide bond spontaneously in the expression system used and showed a catalytic efficiency equivalent to that of the wild-type enzyme for hydrolysis of a synthetic peptide substrate. The thermodynamic characteristics of these enzymes were examined in terms of enzyme autolysis (t1/2) and thermal stability (Tm). The half-life of the Cys-61/Cys-98 mutant was found to be 2-3 times longer than that of the wild-type enzyme. Similar results were obtained by differential scanning calorimetry. The disulfide mutant showed a Tm of 63.0 degrees C, which was 4.5 degrees C higher than that observed for the wild-type enzyme. Under reducing conditions, however, the characteristics of the mutant enzyme were found to revert to those of the wild-type enzyme. These results strongly suggest that the introduction of a disulfide bond by site-directed mutagenesis enhanced the thermostability of subtilisin E without changing the catalytic efficiency of the enzyme.  相似文献   

16.
Storjohann L  Holst B  Schwartz TW 《Biochemistry》2008,47(35):9198-9207
A highly conserved feature across all families of 7TM receptors is a disulfide bridge between a Cys residue located at the extracellular end of transmembrane segment III (TM-III) and one in extracellular loop 2 (ECL-2). The zinc sensor GPR39 contains four Cys residues in the extracellular domains. By using mutagenesis, treatment with the reducing agent TCEP, and a labeling procedure for free sulfhydryl groups, we identify the pairing of these Cys residues in two disulfide bridges: the prototypical bridge between Cys (108) in TM-III and Cys (210) in ECL-2 and a second disulfide bridge connecting Cys (11) in the N-terminal domain with Cys (191) in ECL-2. Disruption of the conserved disulfide bond by mutagenesis greatly reduced the level of cell surface expression and eliminated agonist-induced increases in inositol phosphate production but surprisingly enhanced constitutive signaling. Disruption of the nonconserved disulfide bridge by mutagenesis led to an increase in the Zn (2+) potency. This phenotype, with an approximate 10-fold increase in agonist potency and a slight increase in E max, was mimicked by treatment of the wild-type receptor with TCEP at low concentrations, which had no effect on the receptor already lacking the second disulfide bridge and already displaying a high Zn (2+) potency. We conclude that the second disulfide bridge, which according to the beta2-adrenergic structure will form a covalent link across the entrance to the main ligand binding pocket, serves to dampen GPR39 activation. We suggest that formation of extra disulfide bridges may be an important general mechanism for regulating the activity of 7TM receptors.  相似文献   

17.
To examine the effect of the introduction of a disulfide bond on the stability of Escherichia coli ribonuclease H, a disulfide bond was engineered between Cys13, which is present in the wild-type enzyme, and Cys44, which is substituted for Asn44 by site-directed mutagenesis. The disulfide bond was only formed between these residues upon oxidation in vitro with redox buffer. The conformational and thermal stabilities were estimated from the guanidine hydrochloride and thermal denaturation curves, respectively. The oxidized (cross-linked) mutant enzyme showed a Tm of 62.3 degrees C, which was 11.8 degrees C higher than that observed for the wild-type enzyme. The free energy change of unfolding in the absence of denaturant, delta G[H2O], and the mid-point of the denaturation curve, [D]1/2, of the oxidized mutant enzyme were also increased by 2.1-2.8 kcal/mol and 0.36-0.48 M, respectively. Introduction of a disulfide bond thus greatly enhanced both the thermal and conformational stabilities of the enzyme. In addition, kinetic analyses for the enzymatic activities of mutant enzymes suggest that Thr43 and Asn44 are involved in the substrate-binding site of the enzyme.  相似文献   

18.
Uniquely among class A beta-lactamases, the RTEM-1 and RTEM-2 enzymes contain a single disulfide bond between Cys 77 and Cys 123. To study the possible role of this naturally occurring disulfide in stabilizing RTEM-1 beta-lactamase and its mutants at residue 71, this bond was removed by introducing a Cys 77----Ser mutation. Both the wild-type enzyme and the single mutant Cys 77----Ser confer the same high levels of resistance to ampicillin in vivo to Escherichia coli; at 30 degrees C the specific activity of purified Cys 77----Ser mutant is also the same as that of the wild-type enzyme. Also, neither wild-type enzyme nor the Cys 77----Ser mutant is inactivated by brief exposure to p-hydroxymercuribenzoate. However, above 40 degrees C the mutant enzyme is less stable than wild-type enzyme. After introduction of the Cys 77----Ser mutation, none of the double mutants (containing the second mutations at residue 71) confer resistance to ampicillin in vivo at 37 degrees C; proteins with Ala, Val, Leu, Ile, Met, Pro, His, Cys, and Ser at residue 71 confer low levels of resistance to ampicillin in vivo at 30 degrees C. The use of electrophoretic blots stained with antibodies against beta-lactamase to analyze the relative quantities of mutant proteins in whole-cell extracts of E. coli suggests that all 19 of the doubly mutant enzymes are proteolyzed much more readily than their singly mutant analogues (at Thr 71) that contain a disulfide bond.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Chicken cystatin (cC) mutant I66Q is located in the hydrophobic core of the protein and increases the propensity for amyloid formation. Here, we demonstrate that under physiological conditions, the replacement of Ile with the Gln in the I66Q mutant increases the susceptibility for the disulfide bond Cys71–Cys81 to be reduced when compared to the wild type (WT) cC. Molecular dynamics (MD) simulations under conditions favoring cC amyloid fibril formation are in agreement with the experimental results. MD simulations were also performed to investigate the impact of disrupting the Cys71–Cys81 disulfide bond on the conformational stability of cC at the atomic level, and highlighted major disruption to the cC appendant structure. Domain swapping and extensive unfolding has been proposed as one of the possible mechanisms initiating amyloid fibril formation by cystatin. Our in silico studies suggest that disulfide bond formation between residues Cys95 and Cys115 is necessary to maintain conformational stability of the I66Q mutant following breakage of the Cys71–Cys81 disulfide bridge. Subsequent breakage of disulfide bond Cys95–Cys115 resulted in large structural destabilization of the I66Q mutant, which increased the α–β interface distance and expanded the hydrophobic core. These experimental and computational studies provide molecular-level insight into the relationship between disulfide bond formation and progressive unfolding of amyloidogenic cC mutant I66Q.

An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:23  相似文献   

20.
In vivo formation and stability of engineered disulfide bonds in subtilisin   总被引:9,自引:0,他引:9  
Computer modeling suggested that a disulfide bond could be built into Bacillus amyloliquefaciens subtilisin between positions 22 (wild-type, Thr) and 87 (Ser) or between positions 24 (Ser) and 87 (Ser). Single cysteines were introduced into this cysteine-free protease at positions 22, 24, or 87 by site-directed mutagenesis of the cloned subtilisin gene. The corresponding double-cysteine mutants were constructed, and recombinant plasmids were expressed in Bacillus subtilis. Double-cysteine mutant enzymes were secreted as efficiently as wild-type, and disulfide bonds were formed quantitatively in vivo. These disulfide bonds were introduced approximately 24 A away from the catalytic site and had no detectable effect on either the specific activities or the pH optima of the mutant enzymes. The equilibrium constants for the reduction of the mutant disulfide bonds by dithiothreitol were determined to be 82 +/- 22 and 20 +/- 5 for Cys22/Cys87 and Cys24/Cys87, respectively. Studies of autoproteolytic inactivation of wild-type subtilisin support a relationship between autolytic stability and conformational stability of the protein. The stabilities of Cys24/Cys87 and wild-type enzymes to autolysis were essentially the same; however, Cys22/Cys87 was actually less stable to autolysis. Reduction of the disulfide cross-bridge lowered the autolytic stability of both double-cysteine mutants relative to their disulfide forms. This correlates with a lowered autolytic stability for the Cys22 and Cys87 single-cysteine mutants, and the fact that an intramolecular hydrogen bond between the hydroxyl groups of Thr22 and Ser87 is likely to be disrupted in the Cys22 and Cys87 single-cysteine mutant proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号