首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many herbicides inhibit the photosynthetic electron transfer in photosystem II by binding to the polypeptide D1. A point mutation in the chloroplast gene psbA, which leads to a change of the amino acid residue 264 of D1 from serine to glycine, is responsible for atrazine resistance in higher plants. We have changed serine 264 to glycine in Synechococcus PCC7942 and compared its phenotype to a mutant with a serine to alanine shift in the same position. The results show that glycine at position 264 in D1 gives rise to a similar phenotype in cyanobacteria and in higher plants, indicating a similar structure of the binding site for herbicides and for the quinone QB in the two systems. A possible mode of binding of phenyl-urea herbicides to D1 is predicted from the difference in herbicidal cross-resistance between glycine and alanine substitutions of serine 264.Abbreviations DCPIP 2,6-dichlorophenolindophenol - I50 concentration of herbicide giving 50% inhibition - Kb binding constant - kb kilobase - MES 2(N-morpholino)ethanesulfonic acid - PS II photosystem II  相似文献   

2.
3.
The structure-activity relationships of the plastoquinone QB binding domain in the D1 subunit of photosystem II (PSII) were investigated by characterization of mutations introduced in the D1 protein. Eight novel point mutations in the gene psbA, which encodes D1, were generated in the cyanobacterium Synechocystis PCC6803 by site-specific mutagenesis in vitro. The effects of the resulting modifications in D1 on electron transfer in PSII and on herbicide binding were analyzed. The results extend the structural analogies between the secondary quinone binding site in D1 and in subunit L of the photosynthetic reaction center in purple bacteria. The involvement of Phe255, Ser264, and Leu271 of D1 in plastoquinone binding and electron transfer in PSII was established. An indirect effect of Tyr254 on the binding of QB was demonstrated. Changes in binding of herbicides and QB to D1 as a result of the mutations revealed specific interactions between amino acid residues in D1 and the plastoquinone and distinguished between the binding sites of QB and herbicides.  相似文献   

4.
The D1 protein of the photosystem II reaction center is thought to be the most light-sensitive component of the photosynthetic machinery. To understand the mechanisms underlying the light sensitivity of D1, we performed in vitro random mutagenesis of the psbA gene that codes for D1, transformed the unicellular cyanobacterium Synechocystis sp. PCC 6803 with mutated psbA, and selected phototolerant transformants that did not bleach in high intensity light. A region of psbA2 coding for 178 amino acids of the carboxyl-terminal portion of the peptide was subjected to random mutagenesis by low fidelity polymerase chain reaction amplification or by hydroxylamine treatment. This region contains the binding sites for Q(B), D2 (through Fe), and P680. Eighteen phototolerant mutants with single and multiple amino acid substitutions were selected from a half million transformants exposed to white light at 320 micromol m(-2) s(-1). A strain transformed with non-mutagenized psbA2 became bleached under the same conditions. Site-directed mutagenesis has confirmed that one or more substitutions of amino acids at residues 234, 254, 260, 267, 322, 326, and 328 confers phototolerance. The rate of degradation of D1 protein was not appreciably affected by the mutations. Reduced bleaching of mutant cyanobacterial cells may result from continued buildup of photosynthetic pigment systems caused by changes in redox signals originating from D1.  相似文献   

5.
The 32-kDa photosystem II protein of the chloroplast is thought to be a target molecule for the herbicide atrazine. The psbA gene coding for this protein was cloned from Solanum nigrum atrazine-susceptible ('S') and atrazine-resistant ('R') biotypes. The 'S' and 'R' genes are identical in nucleotide sequence except for an A to G transition, predicting a Ser to Gly change at codon 264. The same predicted amino acid change in psbA was previously shown for an Amaranthus hybridus 'S' and 'R' biotypes which had, in addition, two silent nucleotide changes between the genes (Hirschberg, J. and McIntosh, L., Science 222, 1346-1349, 1983). Occurrence of the identical, non-silent change in psbA in different 'S' and 'R' weed biotype pairs suggests a functional, herbicide-related role for this codon position.  相似文献   

6.
A Danon  S P Mayfield 《The EMBO journal》1991,10(13):3993-4001
Genetic analysis has revealed a set of nuclear-encoded factors that regulate chloroplast mRNA translation by interacting with the 5' leaders of chloroplastic mRNAs. We have identified and isolated proteins that bind specifically to the 5' leader of the chloroplastic psbA mRNA, encoding the photosystem II reaction center protein D1. Binding of these proteins protects a 36 base RNA fragment containing a stem-loop located upstream of the ribosome binding site. Binding of these proteins to the psbA mRNA correlates with the level of translation of psbA mRNA observed in light- and dark-grown wild type cells and in a mutant that lacks D1 synthesis in the dark. The accumulation of at least one of these psbA mRNA-binding proteins is dependent upon chloroplast development, while its mRNA-binding activity appears to be light modulated in developed chloroplasts. These nuclear encoded proteins are prime candidates for regulators of chloroplast protein synthesis and may play an important role in coordinating nuclear-chloroplast gene expression as well as provide a mechanism for regulating chloroplast gene expression during development in higher plants.  相似文献   

7.
8.
9.
Several strains of Synechococcus PCC7942 carrying point mutations in the gene psbA were studied by thermoluminescence and polarographic measurement of flash-induced oxygen yield. The following results were obtained: (a) Replacement of Ser-264 in D1 by Ala (mutant Di1) or Gly (mutant G264) resulting in DCMU and atrazine resistance leads to a downshift of the thermoluminescence (TL) B-band peak temperature from 40 degrees C in wild-type thylakoids to about 30 degrees C. In dark adapted samples of both mutants the TL and oxygen yield pattern induced by a train of single turnover flashes were strongly damped indicative of a high miss factor. (b) In contrast to Ser-264 mutants, replacement of Phe-255 in D1 by Tyr (mutant Tyr5) induced strong resistance to atrazine but not to DCMU and did not affect the peak termperature of the B-band and the flash-induced TL and oxygen yield patterns. In this respect mutant Tyr5 resembles the wild type. (c) No significant differences have been found between strains with single site mutations in psbAI and normal psbAII/psbAIII genes, and strains with same mutations in psbAI but additional deletion of psbAII and psbAIII. Obviously in strains were psbAI is present, PS II complexes containing gene products of psbAII and psbAIII are not assembled in detectable amounts. (d) Strains with double mutations at positions 264 and 255 display a downshift of the B-band peak temperature. Their oscillatory patterns of B-band intensity and oxygen yield are highly damped. This behaviour is similar to strains D1 and G264 which are modified at position 264 only. We extend reports on additivity of mutation effects on herbicide binding to binding of QB. (e) Mutations at the QB site not only influence the binding of QB and herbicides but also change the thermoluminescence quantum yield and the lifetimes of the redox states S2 and S3 of the water oxidase. This finding might indicate long ranging effects on Photosystem II exerted by structural modifications of the QB site. From these data we conclude that Ser-264 is essential for binding of atrazine, DCMU and QB, whereas Phe-255 is involved in atrazine binding and its substitution by Tyr does not markedly affect QB or DCMU binding in Synechococcus PCC7942.  相似文献   

10.
Translational regulation has been identified as one of the key steps in chloroplast-encoded gene expression. Genetic and biochemical analysis with Chlamydomonas reinhardtii has implicated nucleus-encoded factors that interact specifically with the 5' untranslated region of chloroplast mRNAs to mediate light-activated translation. F35 is a nuclear mutation in C. reinhardtii that specifically affects translation of the psbA mRNA (encoding D1, a core polypeptide of photosystem II), causing a photosynthetic deficiency in the mutant strain. The F35 mutant has reduced ribosome association of the psbA mRNA as a result of decreased translation initiation. This reduction in ribosome association correlates with a decrease in the stability of the mRNA. Binding activity of the psbA specific protein complex to the 5' untranslated region of the mRNA is diminished in F35 cells, and two members of this binding complex (RB47 and RB55) are reduced compared with the wild type. These data suggest that alteration of members of the psbA mRNA binding complex in F35 cells results in a reduction in psbA mRNA-protein complex formation, thereby causing a decrease in translation initiation of this mRNA.  相似文献   

11.
A mutation of the psbA gene was identified in photoautotrophic potato (Solanum tuberosum L. cv Superior x U.S. Department of Agriculture line 66-142) cells selected for resistance to 6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine (atrazine). Photoaffinity labeling with 6-azido-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine detected a thylakoid membrane protein with a M(r) of 32,000 in susceptible, but not in resistant, cells. This protein was identified as the secondary quinone acceptor of photosystem II (QB) protein. Atrazine resistance in selected cells was attributable to a mutation from AGT (serine) to ACT (threonine) in codon 264 of the psbA gene that encodes the QB protein. Although the mutant cells exhibited extreme levels of resistance to atrazine, no concomitant reductions in photosynthetic electron transport or cell growth rates compared to the unselected cells were detected. This is in contrast with the losses in productivity observed in atrazine-resistant mutants that contain a glycine-264 alteration.  相似文献   

12.
Photoinhibition of photosynthesis and growth responses at diffrent light levels (10, 120 and 250 μmol m−2 s−1) were studied in psbA gene mutants R2S2C3 ( psbAI gene present) and R2K1 ( psbAIIIpsbAIII genes present) of the cyanobacterium Synechococcus sp . PCC 7942 ( Anacystis nidulans R2). Mutant R2K1 (possessing form II of the D1 protein of photosystem II) was much more resistant to photoinhibition than the mutant R2S2C3 (possessing form I of the D1 protein). At moderate inhibitory light levels (100 to 300 μmol m−2 s−1) this was largely ascribed to an increased rsistance of the photosystem II reaction cetres possessing form II of the D1 protein. However, at higher light levels the higher resistance mutant R2K1 was assigned to a higher rate of photosystem II repair, i.e. turnover of the D1 protein. Moreover, our results support the hypothesis that photoinhibition of photosystem II and photoinhibitory induced quenching are due to separate processes. Results from growth experiments show that the R2K1 mutant has a slower growth rate than the R2S2C3 mutant but shows an increased survival under high light stress conditions. It is hypothesized that high resistance to photoinhibition, though allowing a better survival under high light, is not advantageous for optimal growth.  相似文献   

13.
14.
Using DNA sequence data for phylogenetic assessment of toxicant targets is a new and promising approach to study toxicant-induced selection in communities. Irgarol 1051 is a photosystem (PS) II inhibitor used in antifouling paint. It inhibits photosynthesis through binding to the D1 protein in PS II, which is encoded by the psbA gene found in genomes of chloroplasts, cyanobacteria and cyanophages. psbA mutations that alter the target protein can confer tolerance to PS II inhibitors. We have previously shown that irgarol induces community tolerance in natural marine periphyton communities and suggested a novel tolerance mechanism, involving the amino acid sequence of a turnover-regulating domain of D1, as contributive to this tolerance. Here we use a large number of psbA sequences of known identity to assess the taxonomic affinities of psbA sequences from these differentially tolerant communities, by performing phylogenetic analysis. We show that periphyton communities have high psbA diversity and that this diversity is adversely affected by irgarol. Moreover, we suggest that within tolerant periphyton the novel tolerance mechanism is present among diatoms only, whereas some groups of irgarol-tolerant cyanobacteria seem to have other tolerance mechanisms. However, it proved difficult to identify periphyton psbA haplotypes to the species or genus level, which indicates that the genomic pool of the attached, periphytic life forms is poorly studied and inadequately represented in international sequence databases.  相似文献   

15.
A foxtail millet (Setaria italica L. Beauv.) line resistant to atrazine was obtained through interspecific hybridization between wild S. viridis L. Beauv. and cultivated S. italica. The resistance was proved to be controlled by a chloroplast-inherited gene and it has further been utilized in foxtail millet production. However, the sequence information of the putative atrazine resistance gene, psbA in foxtail millet’s chloroplast genome encoding photosystem II D1 protein (32 kDa thylakoid membrane protein) (photosystem QB protein) and the mutation site responsible for the resistance are not known. In this paper the psbA sequences of six atrazine susceptible/resistant foxtail millet varieties were obtained and compared. The results indicated that there was only one amino acid difference between susceptible and resistance gene, resulting from a single base substitution. It was concluded that a mutant allele of photosystem II protein D1 encoding a Gly residue instead of a Ser residue at position 264 is a major gene of resistance to atrazine. Moreover, the phylogenetic tree based on the psbA coding region of thirty-five plant species was carried out. The phylogenetic relationship between S. italica and other plants and the related evolutionary issues were discussed and it was suggested that psbA sequences could be used in phylogenetic studies in plants. Xiaoping Jia and Jincheng Yuan have equal contribution.  相似文献   

16.
The D1 protein constitutes one of the reaction center subunits of photosystem II and turns over rapidly due to photooxidative damage. Here, we studied the degradation of a truncated D1 protein. A plasmid with a precise deletion in the reading frame of the psbA gene encoding D1 was introduced into the chloroplast of Chlamydomonas reinhardtii. A homoplasmic mutant containing the desired gene was able to synthesize the truncated form of the polypeptide, but could not accumulate significant levels of it. As a consequence, other central photosystem II subunits did not assemble within the thylakoid membrane. In vivo pulse-chase experiments showed that the abnormal D1 protein is rapidly degraded in the light. Degradation was delayed in the light in the presence of an uncoupler, or when cells were incubated in the dark. Pulse-chase experiments performed in vitro indicate that an ATP and metal-dependent protease is responsible for the breakdown process. The paper describes the first in vivo and in vitro functional test for ATP-dependent degradation of a defect polypeptide in chloroplasts. The possible involvement of proteases similar to those removing abnormal proteins in prokaryotic organisms is discussed on the basis of proteases recently identified in chloroplasts.  相似文献   

17.
To gain insight into the biogenesis of photosystem II (PSII) and to identify auxiliary factors required for this process, we characterized the mutant hcf173 of Arabidopsis thaliana. The mutant shows a high chlorophyll fluorescence phenotype (hcf) and is severely affected in the accumulation of PSII subunits. In vivo labeling experiments revealed a drastically decreased synthesis of the reaction center protein D1. Polysome association experiments suggest that this is primarily caused by reduced translation initiation of the corresponding psbA mRNA. Comparison of mRNA steady state levels indicated that the psbA mRNA is significantly reduced in hcf173. Furthermore, the determination of the psbA mRNA half-life revealed an impaired RNA stability. The HCF173 gene was identified by map-based cloning, and its identity was confirmed by complementation of the hcf phenotype. HCF173 encodes a protein with weak similarities to the superfamily of the short-chain dehydrogenases/reductases. The protein HCF173 is localized in the chloroplast, where it is mainly associated with the membrane system and is part of a higher molecular weight complex. Affinity chromatography of an HCF173 fusion protein uncovered the psbA mRNA as a component of this complex.  相似文献   

18.
The psbA multigene family in Synechococcus sp. strain PCC 7942 encodes two forms of the D1 protein; Form I, the product of psbAI, differs from Form II, the product of psbAII and psbAIII, at 25 of 360 amino acid positions. D1 is essential for photosynthesis as a protein component of the photosystem II reaction center. Antisera were raised against purified hybrid proteins encoded by psbAI-lacZ and psbAIII-lacZ translational gene fusions that contain the unique amino termini of Form I and Form II, respectively. Form specificity of each antiserum was verified by Western analysis using thylakoid membranes from mutant strains containing only Form I or Form II. Western analysis of thylakoid membranes from wild-type cells cultured at different light intensities detected both forms of D1 in the membrane and showed changes in the ratio of the two forms. The D1 composition of the membrane matched predicted ratios of the forms based on differential gene expression: psbAI is expressed highest at low light, and both psbAII and psbAIII are expressed highest at high light. Along a gradient of light intensity from 5 microE. m-2.s-1 to 482 microE.m-2.s-1, the relative amount of Form I in thylakoid membranes decreased 58%, while the relative amount of Form II increased 60%. Maximum detection of Form I coupled with minimum detection of Form II in membranes from cells harvested at light intensities below 390 microE.m-2.s-1 suggests a central role for Form I in photosystem II. Increased incorporation of Form II into the thylakoid membrane occurred at light intensities reported by others to be photoinhibitory, suggesting that Form II serves a role in adaptation to high light.  相似文献   

19.
20.
Low-oxygen induction of normally cryptic psbA genes in cyanobacteria   总被引:1,自引:0,他引:1  
Summerfield TC  Toepel J  Sherman LA 《Biochemistry》2008,47(49):12939-12941
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号