首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
On the basis of chemical and methylation analyses, one- and two-dimensional (1)H- and (13)C-NMR spectroscopy, including COSY, TOCSY, NOESY and (1)H, (13)C HSQC experiments, a neutral O-specific polysaccharide isolated from Hafnia alvei strain PCM 1223 lipopolysaccharide (LPS) was found to be an alpha-mannan composed of pentasaccharide repeating units having the following structure:-->3)-alpha-D-Manp-(1-->3)-alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->. Immunoblotting showed a strong cross-reactivity between anti-H. alvei PCM 1223 serum and LPSs of Escherichia coli O9 and Klebsiella pneumoniae O3. The serological relationship of the LPSs of these bacteria is due to the structural identity of their O-specific polysaccharides, though the LPSs differ in their core regions.  相似文献   

2.
Abstract The discovery of the derivatives of 2,3-diamino-2,3-dideoxyuronic acids and 5,7-diamino-3,5,7,9-tetradeoxynonulosonic acids in bacterial polysaccharides enlarges the list of natural monosaccharides. Many of the new sugars carry unusual N -substituents, such as formyl, ( R )-3-hydroxybutyryl, and acetimidoyl groups. They are most characteristics of O-chains of Pseudomonas aeruginosa lipopolysaccharides, composed almost exclusively of amino sugars or amphoteric amino sugars; the latter seem to play an important role as serological determinants. The identification of these sugars and the structural determination of the O-specific polysaccharides provide the chemical basis for the classification of P. aeruginosa strains. Some of the new monosaccharides enter also the polysaccharides from some other bacteria.  相似文献   

3.
O-specific polysaccharides (O-antigens) of the lipopolysaccharides (LPS) of Proteus penneri strains 1 and 4 were studied using sugar analysis, (1)H and (13)C NMR spectroscopy, including 2D COSY, H-detected (1)H,(13)C HMQC, and rotating-frame NOE spectroscopy (ROESY). The following structures of the tetrasaccharide (strain 1) and pentasaccharide (strain 4) repeating units of the polysaccharides were established: [reaction: see text]. In the polysaccharide of P. penneri strain 4, glycosylation with the lateral Glc residue (75%) and O-acetylation of the lateral GalNAc residue (55%) are nonstoichiometric. This polysaccharide contains also other, minor O-acetyl groups, whose positions were not determined. The structural similarity of the O-specific polysaccharides was consistent with the close serological relatedness of the LPS, which was demonstrated by immunochemical studies with O-antisera against P. penneri 1 and 4. Based on these data, it was proposed to classify P. penneri strains 1 and 4 into a new Proteus serogroup, O72, as two subgroups, O72a and O72a,b, respectively. Serological cross-reactivity of P. penneri 1 O-antiserum with the LPS of P. penneri 40 and 41 was substantiated by the presence of an epitope(s) on the LPS core region shared by all P. penneri strains studied.  相似文献   

4.
On mild acid degradation on lipopolysaccharides of seven Pseudomonas aeruginosa immunotypes, O-specific polysaccharides were obtained and their structures established. A peculiar feature of the polysaccharides is the presence of various, mostly acidic, mono- and diaminosugars, many of which have not previously been found in nature. The absence of serological cross-reactions (inhibition of passive haemagglutination) between lipopolysaccharides of seven immunotypes correlates with the absence of any common oligosaccharide fragments in their O-specific chains. The data obtained revealed structural and serological interrelations between O-antigens of seven immunotypes and P. aeruginosa O-serotypes, and showed that immunotypes 1 and 7 should be included into the serological classification scheme as individual O-serotypes.  相似文献   

5.
Lipopolysaccharides and O-specific polysaccharides were isolated from the outer membrane of bacterial cells of three strains belonging to two Azospirillum species, and their structures were established by monosaccharide analysis including determination of the absolute configurations, methylation analysis, and one- and two-dimensional NMR spectroscopy. It was shown that while having the identical composition, the O-polysaccharides have different branched tetrasaccharide repeating units. Two neutral polysaccharides were found in the lipopolysaccharide of A. brasilense 54, and the structure for the predominant O-polysaccharide was determined. The structural data, together with results of serological studies, enabled assignment of strains examined to a novel serogroup, III. The chemical basis for the serological relatedness among the azospirilla of this serogroup is presumably the presence of a common →3)-α-L-Rhap-(1→2)-α-L-Rhap-(1→3)-α-L-Rhap-(1→oligosaccharide motif in their O-polysaccharides.  相似文献   

6.
Serological tests revealed immunochemical similarities between the lipopolysaccharides of Hafnia alvei strains PCM 1200, 1203 and 1205. Immunoblotting and ELISA showed cross-reactions between the strains. NMR spectroscopy showed that the O-deacetylated O-specific polysaccharides isolated from lipopolysaccharides of H. alvei strains PCM 1200 and 1203 possessed the same composition and sequence as the O-deacetylated O-specific polysaccharide of H. alvei strain PCM 1205, that is a glycerol teichoic-acid-like polymer with a repeating unit of the following structure: [carbohydrate structure: see text] NMR spectroscopic studies of the polysaccharides concluded that O-3 of the side chain beta-D-GlcpNAc is partially O-acetylated (50-80%) in both investigated strains. In strain PCM 1203 an additional O-acetyl group (50-80%) is linked to O-6 of the chain -->3)-alpha-D-GlcpNAc-(1--> residue. The structural features of the isolated O-specific polysaccharides were also the same as those of the O-specific polysaccharides on the bacterial cells directly observed by the HR-MAS NMR technique.  相似文献   

7.
为探讨常压室温等离子体诱变的3株高产多糖猴头菌和出发菌株的多糖组分差异,通过液体发酵获得的菌丝体经水提、分级醇沉获得8个胞内多糖组分,对它们的理化性质、结构特征及体外免疫活性进行了研究。结果表明,3株ARTP诱变菌株414、321、236菌丝体多糖含量较出发菌株有较明显提升;ARTP诱变的猴头菌20%醇沉多糖组分较出发菌株分子量大,所占比例增加;诱变菌株60%醇沉多糖组分的分子量略大于出发菌株,所占比例相近。20%醇沉多糖主要由半乳糖、葡萄糖、甘露糖构成,诱变菌株该多糖组分中葡萄糖和甘露糖的比例较出发菌株均有明显提升,60%醇沉多糖组分单糖组成无明显差异;8个多糖组分均具有体外刺激巨噬细胞释放NO的活性,其中20%醇沉多糖的活性优于60%醇沉多糖,诱变菌株的生物活性优于出发菌株。本研究探讨了ARTP诱变对猴头菌胞内多糖结构及活性的影响,为猴头菌相关产品的开发提供了优质资源。  相似文献   

8.
Cell wall and soluble polysaccharides that reacted with Trichosporon domesticum factor III serum were isolated from the type strain of T. domesticum. The fractions contained O-acetyl groups, which contributed to the serological reactivity. The antigenic structure was characterized by chromatographic and spectroscopic methods. The polysaccharide has an alpha-(1-->3)-D-mannan backbone with hetero-oligosaccharide side chains consisting of a 2-O-substituted beta-D-glucuronic acid residue bound to O-2 of the mannose residue, beta-D-xylopyranosyl residues located in the middle of the side chain, and a nonreducing terminal alpha-L-arabinopyranosyl residue bound to 0-4 of xylose. The mannan backbone is O-acetylated at O-6 of the mannose residues.  相似文献   

9.
The chemical structures and serological specificities of polysaccharides isolated from four species of dermatophytes, Microsporum praecox, Trichophyton ferrugineum, T. sabouraudii, and T. tonsurans, were investigated. Each of these species yielded a mixture of crude polysaccharides which could be separated into three water-soluble, neutral polysaccharides free of nitrogen. These were grouped as galactomannan I, galactomannan II, and glucan. The galactomannans I were quite similar in chemical structure. When measured by complement fixation, their serological cross-reactivities were similar with rabbit antisera to each of these species except T. sabouraudii. The differences in their relative reactivities with this antiserum could be correlated with differences in structure and specificity of this antiserum for galactofuranose end groups. The galactomannans II differed both in chemical structure and in their serological reactivities with antisera to each of these species. The galactomannan II from T. ferrugineum differed most in chemical structure and was the least reactive serologically. The glucans also differed in both structure and serological reactivities.  相似文献   

10.
The coaggregation receptor polysaccharides (RPS) of Streptococcus oralis and related species are recognized by lectin-like adhesins on other members of the oral biofilm community and by RPS-specific antibodies. The former interactions involve beta-GalNAc or beta-Gal containing host-like motifs in the oligosaccharide repeating units of these polysaccharides, whereas the latter involves features of these molecules that are immunogenic. In the present investigation, the molecular and corresponding structural basis for the serotype specificity of S. oralis ATCC 10557 RPS was determined by engineering the production of this polysaccharide in transformable Streptococcus gordonii 38. This involved the systematic replacement of genes in the rps cluster of strain 38 with different but related genes from S. oralis 10557 and structural characterization of the resulting polysaccharides. The results identify four unique genes in the rps cluster of strain 10557. These include wefI for an alpha-Gal transferase, wefJ for a GalNAc-1-phosphotransferase that has a unique acceptor specificity, wefK for an acetyl transferase that acts at two positions in the hexasaccharide repeating unit, and a novel wzy associated with the beta1-3 linkage between these units. The serotype specificity of engineered polysaccharides correlated with the wefI-dependent presence of alpha-Gal in these molecules rather than with partial O-acetylation or with the linkage between repeating units. The findings illustrate a direct approach for defining the molecular basis of polysaccharide structure and antigenicity.  相似文献   

11.
Aims: To obtain a bacterial strain that can be used to quantify biodegradable polysaccharides at concentrations of a few micrograms per litre in freshwater. Methods and Results: Flavobacterium johnsoniae strain A3 was isolated from tap water supplemented with laminarin, pectin or amylopectin at 100 μg C l?1 and river Rhine water. The organism utilized 14 of 23 oligo‐ and polysaccharides, and 1 of 9 monosaccharides, but none of the sugar acids, sugar alcohols, carboxylic acids or aromatic acids tested at 10 μg C l?1. Amino acids promoted growth of strain A3, but not in coculture with assimilable organic carbon (AOC) test strain Pseudomonas fluorescens P17, which utilized these compounds more rapidly than strain A3. Compounds released by strain P17 and AOC test strain Spirillum sp. NOX grown on acetate promoted the growth of strain A3 at Nmax values of ≥ 2 × 105 CFU ml?1 of strain P17 and ≥ 5 × 105 CFU ml?1 of strain NOX. Significant growth of strain A3 was observed in surface water and in tap water in the presence of strain P17 (Nmax P17 < 2 × 105 CFU ml?1). Conclusions: Strain A3 utilizes oligo‐ and polysaccharides at microgram‐per‐litre levels. In surface water and in tap water, the organism was able to utilize compounds that were not utilized by strain P17. These compounds may include oligo‐ and/or polysaccharides. Significance and Impact of the Study: Phytoplanktonic and bacterial polysaccharides can constitute an important biodegradable fraction of natural organic matter in water and may promote growth of heterotrophic bacteria during water treatment and drinking water distribution. Strain A3 can be used to quantify a group of compounds that includes oligo‐ and polysaccharides at microgram‐per‐litre levels in freshwater.  相似文献   

12.
A marked serological cross-reactivity was observed by ELISA and a precipitation test between anti-Proteus mirabilis O23 serum and the lipopolysaccharide as well as the O-specific polysaccharide from the Proteus mirabilis strain belonging to serogroup O6. The structures of the O-specific polysaccharides were elucidated using chemical and NMR spectroscopic analyses, and the only common component, 2-acetamido-2-deoxy-β-d -glucopyranose (β-d -GlcNAc), was revealed, which was suggested to be responsible for the cross-reactivity observed. Both anti-O23 and anti-O6 sera were shown to react with 1, 3-linked β-d -GlcNAc-containing O-antigen from Salmonella enterica ssp. arizonae O59 also. The lack of reactivity of Smith-degraded P. mirabilis O6 O-specific polysaccharide with homologous antiserum indicated the crucial role of α-d -glucuronic acid in specific antibody binding.  相似文献   

13.
Cell wall and soluble polysaccharides that reacted with Trichosporon domesticum factor III serum were isolated from the type strain of T. domesticum. The fractions contained O-acetyl groups, which contributed to the serological reactivity. The antigenic structure was characterized by chromatographic and spectroscopic methods. The polysaccharide has an α-(1→3)- -mannan backbone with hetero-oligosaccharide side chains consisting of a 2-O-substituted β- -glucuronic acid residue bound to O-2 of the mannose residue, β- -xylopyranosyl residues located in the middle of the side chain, and a nonreducing terminal α- -arabinopyranosyl residue bound to O-4 of xylose. The mannan backbone is O-acetylated at O-6 of the mannose residues.  相似文献   

14.
The Gram-negative bacteria Actinobacillus suis colonizes the upper respiratory and genital tracts of swine. Along with capsular polysaccharides, lipopolysaccharides (O-chain→core→lipid A~cell) are a main cell-surface component of A.?suis. In this study, we determined that A.?suis lipopolysaccharide incorporates a conserved core that shares some structural features with several core types of A.?pleuropneumoniae . These common core structural features likely account for the observed serological cross-reactivity between A.?suis and A.?pleuropneumoniae, and the data suggest that the structural epitopes responsible for immunogenicity are those in the outer core domain.  相似文献   

15.
Cultivation conditions optimal for biosynthesis of exogenous polysaccharides by methylotrophic bacteria Methylobacillus flagellatum KT were evaluated. The mutant strain most active in accumulating exogenous polysaccharides was selected. Gradual adaptation of this strain to the deuterated medium containing 1 vol % CD3OD in deuterium oxide intensified biosynthesis of exogenous polysaccharides and inhibited bacterial growth (compared to the standard medium). The monomeric composition of exogenous polysaccharides obtained during cultivation on standard and deuterated media was estimated by HPLC and NMR spectroscopy. Nondeuterated exogenous polysaccharides contained only fructose, whereas deuterated exogenous polysaccharides contained 98% fructose and 2% ribose. Paramagnetic resonance spectroscopy showed that the degree of deuterium incorporation into molecules of biosynthetic carbohydrates was 89%.  相似文献   

16.
The O8 and O9-specific lipopolysaccharides of Escherichia coli lost their serological activity during liberation of the polysaccharide moieties (alpha-mannans) by mild acid hydrolysis, as tested by passive haemagglutination and haemagglutination inhibition. The serological activities and specificities were restored by substitution of the polysaccharides with 1 to 2 stearoyl groups per polysaccharide chain. The mannans obtained by biosynthesis in vitro were serologically active only when bound to the membrane-associated hydrophobic carrier molecule. Liberation of the polysaccharides from the carrier by treatment with aqueous phenol resulted in loss of the serological activity. The O8- and O9-specific mannans of E. coli are thus serologically active when they are part of an amphiphilic molecule and not as free polysaccharides.  相似文献   

17.
A strain of Citrobacter sedlakii showing serological cross-reaction with Escherichia coli O157 antisera was demonstrated to produce a lipopolysaccharide O-antigen having an identical structure with that of the E. coli O157 O-antigen. A strain of Citrobacter freunndii showing similar cross-reaction with E. coli O157 specific monoclonal antibody was shown to produce a lipopolysaccharide O-antigen composed of a trisaccharide repeating unit having the structure [ 2)-alpha-D Rhap-(1-3)-beta-D-Rhap-(1-4)-beta-D-Glcp-(1-]. This O-antigen differs from that of the E. coli O157 O-antigen and also lacks a component 2-substituted 4-amino-4,6-dideoxy-alpha-D-mannopyranosyl residue implicated as the common epitope in the lipopolysaccharide O-antigens of previously investigated bacterial species showing serological cross-reactivity with E. coli O157 antisera. The C freundii O-antigen presents an interesting example of structural mimicry within a bacterial polysaccharide antigen.  相似文献   

18.
Lipopolysaccharide of Proteus penneri strain 63 was degraded by mild acid to give a high molecular mass O-specific polysaccharide that was isolated by gel-permeation chromatography. Sugar and methylation analyses and NMR spectroscopic studies, including two-dimensional 1H, 1H COSY, TOCSY rotating-frame NOE spectroscopy, H-detected 1H,13C and 1H,31P heteronuclear multiple-quantum coherence (HMQC), and 1H, 13C HMQC-TOCSY experiments, demonstrated the following structure of the polysaccharide: where FucNAc is 2-acetamido-2,6-dideoxygalactose and PEtn is 2-aminoethyl phosphate. The polysaccharide studied shares some structural features, such as the presence of D-GlcNAc6PEtn and an alpha-L-FucNAc-(1-->3)-D-GlcNAc disaccharide, with other Proteus O-specific polysaccharides. A marked cross-reactivity of P. penneri 63 O-antiserum with P. vulgaris O12 was observed and substantiated by a structural similarity of the O-specific polysaccharides of the two strains. In spite of this, the polysaccharide of P. penneri 63 has the unique structure among Proteus O-antigens, and therefore a new, separate serogroup, O68, is proposed for this strain.  相似文献   

19.
Lactobacillus strains can synthesize capsular polysaccharides (CPS), which are important substances in the dairy industry—they exhibit many important technological as well as health-promoting properties. Technological advancements have made it possible to detect bacterial capsules using costly and labor-intensive methods, such as serological reactions, molecular genetic techniques, and electron microscopy. Light microscopy, which is the method of interest in this paper, is one of the most widely accessible and cheapest techniques. CPS may be observed under a light microscope after staining bacterial cells and the background with a basic die and an acidic die, respectively (negative–positive staining), with the capsules remaining transparent. The literature offers many polysaccharide staining methods, but due to the considerable structural diversity of CPS and possible dye-capsule interactions, a suitable staining technique should be carefully selected for each strain. The current study showed that not all methods adequately reveal Lactobacillus CPS, with the most effective ones being those proposed by Hiss and Maneval.  相似文献   

20.
Abstract DNA-rRNA and DNA-DNA hybridization studies indicate that the classical pyogenic streptococci can be divided into five homology clusters. Based on these studies the term pyogenic streptococci should be confined to the first cluster consisting of serological groups A, A-variant, C, G ('large' colony, type II) and L.
Streptococci of serological groups B and M form the second cluster. The third cluster is composed of streptococci of serological groups R and S and serological groups U, V and P are found in the fourth cluster. The fifth cluster comprises strains of Streptococcus anginosus S. intermedius, Streptococcus MG and serological groups G ('minute' colony, type I) and F (type I). Most of the test strains contain the peptidoglycan type Lys-Ala1–3. Only streptococci of serogroups R and S reveal a directly cross-linked peptidoglycan. Rhamnose was found as characteristic component of all cell wall polysaccharides. The impact of our results on the systematics of classical pyogenic streptococci will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号