首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of fathead minnows (Pimephales promelas) with either [75Se]selenate, -selenite or -l-selenomethionine by gavage at 20 ng Se/g resulted in organ uptake and early distribution patterns which differed significantly between compounds. The greatest differences in uptake between compounds was observed in liver tissue which accumulated much less [75Se]selenate than either selenite or l-selenomethionine. The 75Se burdens and relative distribution among the various organs were nearly identical during the elimination phase for [75Se]selenate and -selenite. This suggests that selenium derived from these compounds converge to a common metabolic pool. The whole body T1/2, rate of 75Se uptake and magnitude of 75Se accumulation were generally greater for [75Se]selenomethionine than the inorganic forms. Selenium-75 was present in the bile following the oral administration of each compound. The partitioning of selenate and selenite into the plasma and cellular fraction of blood differs with both the compound and time following exposure.  相似文献   

2.
Following administration by gavage [75Se]selenate and [75Se]selenite were absorbed from the gastrointestinal tract of fathead minnows (Pimephales promelas) at 94 and 80% efficiency, respectively. Approximately 12% of the [75Se]selenate administered by i.p. injection was eliminated via the urine, and across the gill within 2 hr. The urine was the primary route of elimination followed by the gill. The bile contained significantly lower amounts of 75Se than that eliminated either across the gill or in the urine. The mucus is capable of binding significant amounts of 75Se. Dietary pretreatment with selenite reduced the retention of a subsequent [75Se]selenite dose administered by gavage.  相似文献   

3.
The uptake of selenite, selenate and selenomethionine (SeMet) was performed with brush border membrane vesicles (BBMV) prepared from rats fed selenium-deficient and supplemented diets. At equilibrium (60 min), the uptake of 75Se from [75Se]selenite ranged from 16.5 to 18.9 nmol mg-1 protein. There was a curvilinear relationship in the uptake of selenite over a concentration range of 10–1000 m. About 2 nmol mg-1 protein was obtained with selenomethionine (SeMet) which occurred between 90 and 180 s. In contrast to selenite, there was a linear relationship in the initial uptake of SeMet over a concentration range of 10–1000 m. The uptake of selenate was approximately 50-fold lower than selenite, reaching 350 pmol mg-1 protein. Dietary selenium level had no effect on the rate of 75Se accumulation by BBMV. Dramatic differences are found in the uptake and binding of selenium by BBMV incubated with different selenocompounds.  相似文献   

4.
The present study was undertaken to evaluate the in vitro availability of chemically varying forms of selenium (Se), supplemented in cow's milk. Two inorganic (selenite and selenate) and two organic (seleno-methionine [Se-Met] and seleno-cystine [Se-Cys]) Se sources were evaluated. The in vitro availability was estimated by the diffusibility of Se during simulated gastrointestinal digestion. First, the diffusibility was compared after adding a constant amount of Se as either selenate, selenite, seleno-methionine, or Se-Cys in milk samples. Se-Met and selenate were found to be significantly more diffusible than selenocystine and selenite under the simulated gastrointestinal conditions. The tendency for superior in vitro availability of selenate and Se-Met compared to selenite and Se-Cys was confirmed for a supplementation range of 5–40 ng/g of Se. This study suggests that the high diffusibility of selenate and Se-Met in a simulated gastrointestinal environment may contribute to their high absorption in vivo.  相似文献   

5.
The formation of dimethylselenide (respiratory) and trimethylselenonium (urinary) metabolites from [75Se]selenomethionine, [75Se]methylselenomethionineselenonium, [75Se]methylselenocysteine, [75Se]dimethylselenocysteineselenonium, and [75Se]trimethylselenonium was determined using single sc doses of 2 or 0.064 mg Se/kg in male and female rats. The 75Se content of liver, kidney, pancreas, testis, spleen, blood, heart, brain, and skeletal muscle was determined at 0.5 and 24 h. Respiratory 75Se after 24 h was greatest from Se-dimethylselenocysteineselenonium (38 and 17% for the high and low doses, respectively). Respiratory 75Se was about 8% for the high dose of Se-methylselenocysteine and was less for all other compounds. Total 75Se excretion in the urine was highest from rats given trimethylselenonium (about 90%, both doses) and was lowest from rats given selenomethionine (4%, low dose). Urine samples were chromatographed on SP-Sephadex cation-exchange columns and 75Se was eluted with ammonium formate; trimethylselenonium was precipitated with ammonium Reineckete solution and trimethylsulfonium carrier. Urinary trimethylselenonium excretion was greatest from rats given trimethylselenonium, but rats given Se-dimethylselenocysteineselenonium (low dose) excreted 35-45% of the dose as trimethylselenonium ion. The lowest quantity of trimethylselenonium was excreted by rats given the low dose of selenomethionine (0-3%). Pancreas, kidney, and liver showed the highest uptake (% of dose/g) of the selenium compounds. Trimethylselenonium was highly concentrated by the kidney and also showed high myocardial uptake (heart/blood ratio = 5) 0.5 h after injection; the selective uptake of trimethylselenonium in heart was not observed for the other selenonium compounds.  相似文献   

6.
Abstract The uptake and incorporation of 75[Se]selenite by Butyrivibrio fibrisolvens and Bacteroides ruminicola were by constitutive systems. Rates of uptake were higher in chemostat culture than in batch culture and there may be some inducible component. Uptake of [75Se]selenite was distinct from sulphate or selenate transport, since sulphate and selenate did not inhibit selenite uptake, nor could sulphate or selenate uptake be demonstrated in these organisms. Selenite uptake in B. fibrisolvens had and apparent K m of 1.74 mM and a V max of 109 ng Se · min−1· (mg protein)−1. An apparent K m of 1.76 mM and V max of 1.5 μg Se · min−1· (mg protein)−1 was obtained for B. ruminicola . [75Se]Selenite uptake by both organisms was partially sensitive to inhibition by 2,4-DNP. Uptake by B. fibrisolvens was also partially inhibited by azide and arsenate and in B. ruminicola it was partially inhibited by fluoride. CCCP, CPZ, DCCD or quinine did not inhibit uptake in either B. fibrisolvens or B. ruminicola . Selenite transport by both organisms was sensitive to IAA and NEM and was strongly inhibited by sulphite and nitrite. [75Se]Selenite was converted to selenocystine, selenohomocystine and selenomethionine by B. fibrisolvens. B. ruminicola did not incorporate [75Se]selenite into organic compounds, but did reduce it to red elemental selenium.  相似文献   

7.
Hudman  J. F.  Glenn  A. R. 《Archives of microbiology》1984,140(2-3):252-256
Selenite uptake and incorporation in Selenomonas ruminantium was constitutive with an inducible component. It was distinct from sulphate or selenate transport, since sulphate and selenate did not inhbit uptake, nor could sulphate or selenate uptake be demonstrated. Selenite uptake had an apparent K m of 1.28 mM and a V max of 148 ng Se min-1 mg-1 protein. Uptake was sensitive to inhibition by 2,4-dinitrophenol (DNP), carbonyl cyanide m-chlorophenyl hydrazone (CCCP), azide, iodoacetic acid (IAA) and N-ethylmaleimide (NEM), but not chloropromazine (CPZ), N,N-dicyclohexyl-carbodiimide (DCCD), quinine, arsenate, or fluoride. Treatment of cells accumulating 75[Se]-Selenite with 2,4,DNP inhibited uptake, but did not cause efflux. Transport of selenite was inhibited by sulphite and nitrite, but not by nitrate, phosphate, sulphate of selenate. 75[Se]-Selenite was incorporated into selenocystine, selenoethionine, selenohomocysteine, and selenomethionine and was also reduced to red elemental selenium.  相似文献   

8.
Selenium is present in plasma and tissues in specific and non-specific forms. The experiments reported here were carried out to clarify some factors that affect these forms of the element in plasma. A selenium-replete human subject was given 400 microg of selenium daily for 28 days as selenomethionine and, in a separate experiment, as selenate. The selenomethionine raised plasma and albumin selenium concentrations. Selenate did neither. The molar ratio of methionine to selenium in albumin was approximately 8000 under basal and selenate-supplemented conditions but 2800 after selenomethionine supplementation. This demonstrates that selenium from selenomethionine, but not selenium from selenate, can be incorporated into albumin, presumably as selenomethionine in the methionine pool. Selenocysteine incorporation into albumin was studied in rats using (75)Se-selenocysteine. No evidence was obtained for incorporation of (75)Se into albumin after exogenous administration or endogenous synthesis of (75)Se-selenocysteine. Thus, selenocysteine does not appear to be incorporated non-specifically into proteins as is selenomethionine. These findings are in support of selenomethionine being a non-specific form of selenium that is metabolized as a constituent of the methionine pool and is unaffected by specific selenium metabolic processes. No evidence was found for non-specific incorporation of selenium into plasma proteins when it was administered as selenate or as selenocysteine. These forms of the element appear to be metabolized by specific selenium metabolic processes.  相似文献   

9.
Interactions between selenium and sulphur nutrition in Arabidopsis thaliana   总被引:14,自引:0,他引:14  
Selenium (Se) is an essential plant micronutrient, but is toxic at high tissue concentrations. It is chemically similar to sulphur (S), an essential plant macronutrient. The interactions between Se and S nutrition were investigated in the model plant Arabidopsis thaliana (L.) Heynh. Arabidopsis plants were grown on agar containing a complete mineral complement and various concentrations of selenate and sulphate. The Se/S concentration ratio in the shoot ([Se](shoot)/[S](shoot)) showed a complex dependence on the ratio of selenate to sulphate concentration in the agar ([Se](agar)/[S](agar)). Increasing [S](agar) increased shoot fresh weight (FW) and [S](shoot), but decreased [Se](shoot). Increasing [Se](agar) increased both [Se](shoot) and [S](shoot), but reduced shoot FW. The reduction in shoot FW in the presence of Se was linearly related to the shoot Se/S concentration ratio. These data suggest (i) that Se and S enter Arabidopsis through multiple transport pathways with contrasting sulphate/selenate selectivities, whose activities vary between plants of contrasting nutritional status, (ii) that rhizosphere sulphate inhibits selenate uptake, (iii) that rhizosphere selenate promotes sulphate uptake, possibly by preventing the reduction in the abundance and/or activity of sulphate transporters by sulphate and/or its metabolites, and (iv) that Se toxicity occurs because Se and S compete for a biochemical process, such as assimilation into amino acids of essential proteins.  相似文献   

10.
Earlier work from our laboratory on Indian mustard (Brassica juncea L.) identified the following rate-limiting steps for the assimilation and volatilization of selenate to dimethyl selenide (DMSe): (a) uptake of selenate, (b) activation of selenate by ATP sulfurylase, and (b) conversion of selenomethionine (SeMet) to DMSe. The present study showed that shoots of selenate-treated plants accumulated very low concentrations of dimethylselenoniopropionate (DMSeP). Selenonium compounds such as DMSeP are the most likely precursors of DMSe. DMSeP-supplied plants volatilized Se at a rate 113 times higher than that measured from plants supplied with selenate, 38 times higher than from selenite, and six times higher than from SeMet. The conversion of SeMet to selenonium compounds such as DMSeP is likely to be rate-limiting for DMSe production, but not the formation of DMSe from DMSeP because DMSeP was the rate of Se volatilization from faster than from SeMet and SeMet (but no DMSeP) accumulated in selenite- or SeMet-supplied wild-type plants and in selenate-supplied ATP-sulfurylase transgenic plants. DMSeP-supplied plants absorbed the most Se from the external medium compared with plants supplied with SeMet, selenate, or selenite; they also accumulated more Se in shoots than in roots as an unknown organic compound resembling a mixture of DMSeP and selenocysteine.  相似文献   

11.
Selenite can be a dominant form of selenium (Se) in aerobic soils; however, unlike selenate, the mechanism of selenite uptake by plants remains unclear. Uptake, translocation and Se speciation in wheat (Triticum aestivum) supplied with selenate or selenite, or both, were investigated in hydroponic experiments. The kinetics of selenite influx was determined in short-term (30 min) experiments. Selenium speciation in the water-extractable fraction of roots and shoots was determined by HPLC-ICPMS. Plants absorbed similar amounts of Se within 1 d when supplied with selenite or selenate. Selenate and selenite uptake were enhanced in sulphur-starved and phosphorus-starved plants, respectively. Phosphate markedly increased K(m) of the selenite influx. Selenate and selenite uptake were both metabolically dependent. Selenite was rapidly converted to organic forms in roots, with limited translocation to shoots. Selenomethionine, selenomethionine Se-oxide, Se-methyl-selenocysteine and several other unidentified Se species were detected in the root extracts and xylem sap from selenite-treated plants. Selenate was highly mobile in xylem transport, but little was assimilated to organic forms in 1 d. The presence of selenite decreased selenate uptake and xylem transport. Selenite uptake is an active process likely mediated, at least partly, by phosphate transporters. Selenite and selenate differ greatly in the ease of assimilation and xylem transport.  相似文献   

12.
We know very little about how soil-borne pollutants such as selenium (Se) can impact pollinators, even though Se has contaminated soils and plants in areas where insect pollination can be critical to the functioning of both agricultural and natural ecosystems. Se can be biotransferred throughout the food web, but few studies have examined its effects on the insects that feed on Se-accumulating plants, particularly pollinators. In laboratory bioassays, we used proboscis extension reflex (PER) and taste perception to determine if the presence of Se affected the gustatory response of honey bee (Apis mellifera L., Hymenoptera: Apidae) foragers. Antennae and proboscises were stimulated with both organic (selenomethionine) and inorganic (selenate) forms of Se that commonly occur in Se-accumulating plants. Methionine was also tested. Each compound was dissolved in 1 M sucrose at 5 concentrations, with sucrose alone as a control. Antennal stimulation with selenomethionine and methionine reduced PER at higher concentrations. Selenate did not reduce gustatory behaviors. Two hours after being fed the treatments, bees were tested for sucrose response threshold. Bees fed selenate responded less to sucrose stimulation. Mortality was higher in bees chronically dosed with selenate compared with a single dose. Selenomethionine did not increase mortality except at the highest concentration. Methionine did not significantly impact survival. Our study has shown that bees fed selenate were less responsive to sucrose, which may lead to a reduction in incoming floral resources needed to support coworkers and larvae in the field. If honey bees forage on nectar containing Se (particularly selenate), reductions in population numbers may occur due to direct toxicity. Given that honey bees are willing to consume food resources containing Se and may not avoid Se compounds in the plant tissues on which they are foraging, they may suffer similar adverse effects as seen in other insect guilds.  相似文献   

13.
Washed-cell suspensions of Sulfurospirillum barnesii reduced selenate [Se(VI)] when cells were cultured with nitrate, thiosulfate, arsenate, or fumarate as the electron acceptor. When the concentration of the electron donor was limiting, Se(VI) reduction in whole cells was approximately fourfold greater in Se(VI)-grown cells than was observed in nitrate-grown cells; correspondingly, nitrate reduction was approximately 11-fold higher in nitrate-grown cells than in Se(VI)-grown cells. However, a simultaneous reduction of nitrate and Se(VI) was observed in both cases. At nonlimiting electron donor concentrations, nitrate-grown cells suspended with equimolar nitrate and selenate achieved a complete reductive removal of nitrogen and selenium oxyanions, with the bulk of nitrate reduction preceding that of selenate reduction. Chloramphenicol did not inhibit these reductions. The Se(VI)-respiring haloalkaliphile Bacillus arsenicoselenatis gave similar results, but its Se(VI) reductase was not constitutive in nitrate-grown cells. No reduction of Se(VI) was noted for Bacillus selenitireducens, which respires selenite. The results of kinetic experiments with cell membrane preparations of S. barnesii suggest the presence of constitutive selenate and nitrate reduction, as well as an inducible, high-affinity nitrate reductase in nitrate-grown cells which also has a low affinity for selenate. The simultaneous reduction of micromolar Se(VI) in the presence of millimolar nitrate indicates that these organisms may have a functional use in bioremediating nitrate-rich, seleniferous agricultural wastewaters. Results with (75)Se-selenate tracer show that these organisms can lower ambient Se(VI) concentrations to levels in compliance with new regulations proposed for release of selenium oxyanions into the environment.  相似文献   

14.
Vigna radiata polysomes efficiently incorporated [75Se]selenomethionine, [14C]methionine, and [14C]leucine in vitro. The optimal conditions for translation were determined to be 4.8 millimolar Mg2+, 182 millimolar K+, and pH 7.4. The rates of incorporation of [75Se]selenomethionine and [14C]methionine were similar when measured separately, but [75Se]selenomethionine incorporation was 35% less than [14C]methionine incorporation when both amino acids were present in equal molar concentrations. Polyacrylamide gel electrophoresis of the hot trichloroacetic acid precipitable translation products demonstrated synthesis of high molecular weight labeled proteins in the presence of [75Se]selenomethionine or [35S]methionine. No major differences in molecular weights could be detected in the electrophoretic profiles. Utilization of selenomethionine during translation by Vigna radiata polysomes establishes a route for the assimilation of selenomethionine by plants susceptible to selenium toxicity.  相似文献   

15.
In earlier studies, the assimilation of selenate by plants appeared to be limited by its reduction, a step that is thought to be mediated by ATP sulfurylase. Here, the Arabidopsis APS1 gene, encoding a plastidic ATP sulfurylase, was constitutively overexpressed in Indian mustard (Brassica juncea). Compared with that in untransformed plants, the ATP sulfurylase activity was 2- to 2.5-fold higher in shoots and roots of transgenic seedlings, and 1.5- to 2-fold higher in shoots but not roots of selenate-supplied mature ATP-sulfurylase-overexpressing (APS) plants. The APS plants showed increased selenate reduction: x-ray absorption spectroscopy showed that root and shoot tissues of mature APS plants contained mostly organic Se (possibly selenomethionine), whereas wild-type plants accumulated selenate. The APS plants were not able to reduce selenate when shoots were removed immediately before selenate was supplied. In addition, Se accumulation in APS plants was 2- to 3-fold higher in shoots and 1.5-fold higher in roots compared with wild-type plants, and Se tolerance was higher in both seedlings and mature APS plants. These studies show that ATP sulfurylase not only mediates selenate reduction in plants, but is also rate limiting for selenate uptake and assimilation.  相似文献   

16.
Selenium (Se) is an essential micronutrient for vertebrates though little is known about the effects on insects. Herbivorous insect larvae acquire Se from plant tissues in the inorganic form of sodium selenate and sodium selenite, and in the organic form of selenoamino acids, selenomethionine, and selenocystine. In this study, we document the effects of dietary supplementation with sodium selenite, sodium selenate, selenocystine, selenomethionine, and selenized yeast on the developmental rate of Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae). Larvae tolerated high levels of Se (500 µg g?1 Se) as sodium selenate and to a lesser extent as selenocystine. Lower levels of sodium selenite (>1 µg g?1 Se) caused increased mortality, reduced rates of pupation, more pupal/adult intermediates, and reduced adult emergence. Selenomethionine proved toxic to larvae at levels above 25 µg g?1 Se, significantly delaying pupation and raising mortality. Provision of Se as selenized yeast, which contains primarily selenomethionine, was also extremely detrimental to larval development and survival. The results indicate that the impact of dietary Se supplement for insects may differ from vertebrates.  相似文献   

17.
The placental transfer of orally administered ameltolide was evaluated to confirm embryonic exposure in the rat developmental toxicity study (Higdon et al., '91). Dissection techniques were used to determine the amount of total radiocarbon that traversed the placenta and distributed within the embryo in pregnant CD rats 0.75, 2, 5, 12, and 24 h after a single oral gavage dose of 50 mg/kg [14C]ameltolide on gestation day 12. Quantification of radiocarbon within placental and embryonic tissues and amniotic fluid was determined and compared with maternal plasma, liver, kidney, uterus, and ovary. Highest concentrations of radiocarbon occurred at 5 h postdose in all tissues sampled (maternal and embryonic) and then declined steadily over the 24-h time course of the study. Maternal liver contained the highest concentrations of radiocarbon at all time points and peaked at 5.86% of dose at 5 h. Embryonic tissues accounted for less than 0.2% of the administered dose at all time points. Tissue-to-maternal plasma ratios indicated that maternal liver and kidney concentrations were higher than maternal plasma concentrations at all time points. Uterine and ovarian concentrations were approximately equal to maternal plasma concentrations at 5, 12, and 24 h postdose. Although placental, embryonic, and amniotic fluid tissue-to-maternal plasma ratios were less than or equal to 1.0, ratios increased slightly throughout the time course of this study. Results from this study confirm embryonic exposure to radiocarbon associated with [14C]ameltolide and/or its metabolites in the rat developmental toxicity study, which has demonstrated the lack of observable teratogenic effects.  相似文献   

18.
The uptake of dietary selenium (about 3.5 mg/kg AF dry wt) as selenomethionine, selenocystine, selenite, selenate, and fish selenium in the plasma and red blood cells (RBC) of the oystercatcher has been investigated. The birds received the various selenium compounds subsequently, for at least 9 wk. After dietary supplementation of selenocystine, selenite, and selenate, plasma selenium was about 350 μg/L and RBC selenium 2.1 mg/kg dry wt. After supplementation of selenomethionine, the plasma concentration increased to 630 μg/L, and the RBC concentration to 4.1 mg/kg dry wt. When the fodder contained 3.1 mg/kg fish Se, an average plasma and RBC concentration of 415 μg/L and 14.4 mg/kg dry wt, respectively, was measured. The maximal increase of the selenium concentration in the plasma was attained at first sampling, 14 d after a change in dietary selenium (selenomethione or fish Se); the uptake seemed to be a concentration-regulated process. RBC concentrations (γ in mg/kg dry wt) increased with time (X in d) according toY=a?be?cX . Fifty percent of the total increase was attained within 17d, suggesting that diffusion into the RBC played a role. The selenium concentration in the plasma was positively correlated with the (fish) Se concentration in the fodder; the RBC concentration (60 d after the change in diet) was positively correlated with the plasma concentration. When the diet contained fish Se, the blood selenium concentrations of the captive birds were similar to the concentrations measured in field birds. Fish Se is a yet undetermined selenium compound. The present experiment showed that fish Se differed from selenomethionine, selenocystine, selenite, or selenate in uptake from the food and uptake in the RBC.  相似文献   

19.
Rat kidney selenium (Se)-containing proteins were studied by isotopic labeling with [75Se]selenite or [75Se]selenomethionine via three routes: oral, intraperitoneal injection, and incubation of kidney slices with the isotope. The two major Se-containing proteins in kidney were fractionated and partially characterized. 75Se elution profiles from Sephadex G-150 chromatography were similar for each labeling protocol, except for the profile obtained following incubation of slices with [75Se]selenomethionine. Of the two major 75Se-containing proteins, the one eluting at the void volume during Sephadex G-150 fractionation had a subunit of 23,000 Mr. The 75Se-labeled tryptic peptide from this protein and a 75Se-containing tryptic peptide from glutathione peroxidase had the same elution time from an HPLC column. A 75,000 Mr 75Se-containing protein had a 65,000 Mr subunit, and the 75Se-labeled tryptic peptide from this protein eluted from the HPLC column before that of glutathione peroxidase. Glutathione peroxidase is the most abundant kidney selenoprotein. Injection of animals with 75Se is the method of choice for isotopic labeling of rat kidney Se-containing proteins. Appropriate methods were developed that can be used in future studies of kidney Se-containing proteins.  相似文献   

20.
Selenium (Se) has chemical properties similar to sulfur, but slight differences can lead to altered tertiary structure and dysfunction of proteins and enzymes, if selenocysteine is incorporated into proteins in place of cysteine. In some areas of California with irrigation agriculture elevated Se concentration in drainage and shallow groundwaters caused bioaccumulation of Se in wetlands and Se toxicity to wildlife. Among higher plants Se accumulators are tolerant to high Se concentrations whereas non-accumulators are Se-sensitive. Algae show a requirement of Se for growth and development, but no Se essentiality has been demonstrated for higher plants, possibly with the exception of Se accumulators. Higher plants take up Se preferentially as selenate via the high affinity sulfate permease. Contents of Se in agricultural crops are usually below 1 mg kg?1 DW, and hence such crops are considered safe for human and animal consumption even when grown on moderately high Se soils. Sulfate salinity inhibits uptake of selenate by many plant species. Assimilation of selenate by non-accumulators leads to synthesis of selenocysteine and selenomethionine; Se-cysteine is readily incorporated into proteins. High Se can interfere with S and N metabolism in non-accumulators. In contrast, Se accumulators sequester Se mainly in non-protein selenoamino acids. Among several selenoenzymes identified in bacteria and mammals, Se-dependent glutathione peroxidase which catalyses the reduction of organic peroxides and H2O2 has been demonstrated convincingly in algae; in higher plants, however, the experimental evidence regarding its occurrence is controversial. All organisms including higher plants contain Se-cysteyl-tRNAs that decode UGA. Selenocysteine is proposed to function as 21st proteinaceous amino acid and thus is suggested to have a biological role in higher plants. Biogeochemical cycling of Se involves significant volatilization of methylated selenides such as dimethyl selenide to the atmosphere from higher plants as well as freshwater algae, but Se exchange between oceans and the atmosphere appears to proceed as net flux to the oceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号