首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Salicylic acid (SA) is absolutely required for establishment of acquired resistance in non-infected tissues following localized challenge of other leaves with a necrotizing pathogen. Although not directly responsive to SA, or induced systemically following pathogen challenge, the expression of defence gene promoter fusions AoPR1—GUS and PAL-3—GUS after wounding or pathogen challenge could be enhanced by pre-treating tobacco plants hydroponically with SA, a phenomenon designated 'potentiation'. Potentiation of AoPR1—GUS wound-responsiveness was also demonstrated locally, but not systemically, in tobacco tissue exhibiting acquired resistance following infection with either viral or bacterial pathogens. Potentiation of wound-responsive expression by prior wounding could not be demonstrated. In contrast, potentiation of pathogen-responsive AoPR1—GUS expression was exhibited both locally and systemically in non-infected tissue. The spatial and temporal exhibition of defence gene potentiation correlated directly with the acquisition of resistance in non-infected tissue. Pathogen-responsive potentiation was obtained at about 10-fold lower levels of salicylic acid than wounding-responsive potentiation in AoPR1—GUS tobacco plants prefed with salicylate. These results may explain the failure to observe systemic potentiation of the wound-responsive defence gene expression. The data suggest a dual role for SA in terms of gene induction in acquired immunity: a direct one by induction of genes such as pathogenesis-related proteins, and an indirect one by potentiation of expression of other local defence genes (such as PAL and AoPR1) which do not respond directly to SA but become induced on pathogen attack or wounding.  相似文献   

3.
4.
5.
6.
Upward leaf movement (hyponastic growth) is adopted by several plant species including Arabidopsis thaliana, as a mechanism to escape adverse growth conditions. Among the signals that trigger hyponastic growth are, the gaseous hormone ethylene, low light intensities, and supra-optimal temperatures (heat). Recent studies indicated that the defence-related phytohormones jasmonic acid (JA) and salicylic acid (SA) synthesized by the plant upon biotic infestation repress low light-induced hyponastic growth. The hyponastic growth response induced by high temperature (heat) treatment and upon application of the gaseous hormone ethylene is highly similar to the response induced by low light. To test if these environmental signals induce hyponastic growth via parallel pathways or converge downstream, we studied here the roles of Methyl-JA (MeJA) and SA on ethylene- and heat-induced hyponastic growth. For this, we used a time-lapse camera setup. Our study includes pharmacological application of MeJA and SA and biological infestation using the JA-inducing caterpillar Pieris rapae as well as mutants lacking JA or SA signalling components. The data demonstrate that MeJA is a positive, and SA, a negative regulator of ethylene-induced hyponastic growth and that both hormones repress the response to heat. Taking previous studies into account, we conclude that SA is the first among many tested components which is repressing hyponastic growth under all tested inductive environmental stimuli. However, since MeJA is a positive regulator of ethylene-induced hyponastic growth and is inhibiting low light- and heat-induced leaf movement, we conclude that defence hormones control hyponastic growth by affecting stimulus-specific signalling pathways.  相似文献   

7.
8.
9.
10.
11.
Most commercially grown apple cultivars are susceptible to fungal diseases. Malus hupehensis has high resistance to many diseases affecting apple cultivars. Understanding innate defence mechanisms would help to develop disease-resistant apple crops. Non-expressor of pathogenesis-related genes 1 (NPR1) plays a key role in regulating salicylic acid (SA)-mediated systemic acquired resistance (SAR). MhNPR1 cDNA, corresponding to genomic DNA and its 5' flanking sequences, was isolated from M. hupehensis. Sequence analysis showed that the regulatory mechanism for oligomer-monomer transition of the MhNPR1 protein in apple might be similar to that of GmNPR1 in soybean, but different from that of AtNPR1 in Arabidopsis. No significant differences in MhNPR1 expression were found in M. hupehensis after infection with Botryosphaeria berengeriana, showing that MhNPR1 might be regulated by pathogens at the protein level, as described for Arabidopsis and grapevine. SA treatment significantly induced MhNPR1 expression in leaves, stems and roots, while methyl jasmonate (MeJA) treatment induced MhNPR1 expression in roots, but not in leaves or stems. The expression of MhNPR1 was highly increased in roots, moderately in leaves, and did not change in stems after treatment with 1-aminocyclopropane-1-carboxylic acid (ACC). SAR marker genes (MhPR1 and MhPR5) were induced by SA, MeJA and ACC in leaves, stems and roots. Overexpression of MhNPR1 significantly induced the expression of pathogenesis-related genes (NtPR1, NtPR3 and NtPR5) in transgenic tobacco plants and resistance to the fungus Botrytis cinerea, suggesting that MhNPR1 orthologues are a component of the SA defence signalling pathway and SAR is induced in M. hupehensis.  相似文献   

12.
13.
The pentacyclic triterpenoids from birch (Betula platyphylla suk) have broad pharmacological activities and can be potentially used for the development of anti-cancer and anti-AIDS drugs. In this study, we explored the effects of spraying 3-year-old white birch with different concentration of methyl jasmonate (MeJA) and salicylic acid (SA) on the expression of key genes in triterpenoid biosynthesis pathways and on the accumulation and physiological characteristics of triterpenoids in birch saplings. The results showed that spraying different concentration of MeJA and SA could obviously promote accumulation of total triterpenoids in 3-year-old white birch. The triterpenoid content in the stem bark was increased by 46.11 %, reaching 81.86 mg/g, after 1 day of treatment with 1 mmol·L?1 MeJA (MJ2), and by 45.07 %, reaching 91.4 mg/g, after 14 days of treatment with 5 mmol·L?1 SA (SA1). In addition, MeJA and SA treatment increased the contents of chlorophyll a and b, antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as photosynthetic performance, and affected the content of soluble sugar and soluble protein in birch leaf. Fluorescence quantitative polymerase chain reaction (qPCR) results showed that MeJA and SA treatment deferentially enhanced the key gene expression of cycloartenol synthase (BPX and BPX2), lupeol synthase (BPW) and beta-amyrin synthase (BPY) in triterpenoid synthesis pathway in birch bark and leaves. The results showed that MeJA and SA induced triterpenoid synthesis of birch plant is closely related with not only the expression of key genes of triterpenoid synthesis pathway but also photosynthesis, anti-stress response and physiological indexes, suggesting that regulation of triterpenoid synthesis of birch by MeJA and SA may involve in more complex mechanisms at physiological and molecular levels.  相似文献   

14.
该研究选用水杨酸(SA)、茉莉酸甲酯(MeJA)、Ca~(2+)、无菌水(对照)作为外源预处理诱导剂,以抗、感枯萎病甜瓜品种为材料,分别于诱导预处理2d后接种甜瓜枯萎菌,并于接种5、7、9d时观察发病情况,进行病情调查;在接种后1、3、5、7、9d取甜瓜叶片,分析抗病甜瓜(MR-1)和感病甜瓜(M1-15)叶片中甜瓜抗枯萎病基因(Fom-2)、几丁质酶基因(CHT)的表达变化,以探寻提高防治甜瓜枯萎病菌侵染的技术途径。结果显示:(1)外源MeJA和SA预处理接种后2品种的病情指数显著低于对照,但Ca~(2+)处理后的病情指数与对照无显著差异。(2)经外源诱导预处理接种后,MR-1和M1-15品种叶片的Fom-2和CHT基因均出现差异表达,但Ca~(2+)诱导其上调表达的效果微弱。(3)经SA、MeJA诱导预处理接种后,2品种叶片的Fom-2和CHT基因表达总体均显著高于对照;Fom-2基因的表达抗病甜瓜MR-1分别在接种后5d、7d时达到峰值,而感病甜瓜M1-15则均在接种9d时达到峰值;CHT基因的表达抗病甜瓜MR-1则均在接种后7d时达到峰值,而感病甜瓜M1-15分别在接种后7d、9d时达到峰值。(4)Ca~(2+)处理对抗、感甜瓜叶片的Fom-2和CHT基因的表达均无显著影响。(5)相关分析表明,经SA、MeJA诱导预处理接种后,甜瓜枯萎病病情指数与Fom-2和CHT基因表达量有显著的相关性;而Ca~(2+)处理效果不显著。研究表明:SA、MeJA通过诱导Fom-2、CHT基因上调表达,进而使甜瓜的抗病性提高,而Ca~(2+)处理对两基因表达和甜瓜抗病性均无显著影响。  相似文献   

15.
Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in soybean defence against soybean cyst nematode (Heterodera glycines Ichinohe, SCN). GmSAMT1 was identified as a candidate SCN defence‐related gene in our previous analysis of soybean defence against SCN using GeneChip microarray experiments. The current study started with the isolation of the full‐length cDNAs of GmSAMT1 from a SCN‐resistant soybean line and from a SCN‐susceptible soybean line. The two cDNAs encode proteins of identical sequences. The GmSAMT1 cDNA was expressed in Escherichia coli. Using in vitro enzyme assays, E. coli‐expressed GmSAMT1 was confirmed to function as salicylic acid methyltransferase. The apparent Km value of GmSAMT1 for salicylic acid was approximately 46 μm . To determine the role of GmSAMT1 in soybean defence against SCN, transgenic hairy roots overexpressing GmSAMT1 were produced and tested for SCN resistance. Overexpression of GmSAMT1 in SCN‐susceptible backgrounds significantly reduced the development of SCN, indicating that overexpression of GmSAMT1 in the transgenic hairy root system could confer resistance to SCN. Overexpression of GmSAMT1 in transgenic hairy roots was also found to affect the expression of selected genes involved in salicylic acid biosynthesis and salicylic acid signal transduction.  相似文献   

16.
17.
Plants can defend themselves indirectly against herbivores by emitting a volatile blend upon herbivory that attracts the natural enemies of these herbivores, either predators or parasitoids. Although signal transduction in plants from herbivory to induced volatile production depends on jasmonic acid (JA) and salicylic acid (SA), the pathways downstream of JA and SA are unknown. Use of Arabidopsis provides a unique possibility to study signal transduction by use of signalling mutants, which so far has not been exploited in studies on indirect plant defence. In the present study it was demonstrated that jar1‐1 and npr1‐1 mutants are not affected in caterpillar (Pieris rapae)‐induced attraction of the parasitoid Cotesia rubecula. Both JAR1 and NPR1 (also known as NIM1) are involved in signalling downstream of JA in induced defence against pathogens such as induced systemic resistance (ISR). NPR1 is also involved in signalling downstream of SA in defence against pathogens such as systemic acquired resistance (SAR). These results demonstrate that signalling downstream of JA and SA differs between induced indirect defence against herbivores and defence against pathogens such as SAR and ISR. Furthermore, it was demonstrated that herbivore‐derived elicitors are involved in induced attraction of the parasitoid Cotesia rubecula  相似文献   

18.
Lipoxygenases (LOXs) are enzymes responsible for lipid peroxidation processes during plant defence responses to pathogen infection. Jasmonates are lipid‐derived signals that mediate plant stress responses with chloroplastic LOXs implicated in the biosynthesis of oxylipins like jasmonic acid (JA). Hypersensitive reaction (HR) cell death of cotton to the incompatible race 18 of Xanthomonas campestris pathovar malvacearum (Xcm) is associated with 9S‐lipoxygenase activity and expression of a 9‐LOX GhLOX1. Here, we report the cloning of cotton (Gossypium hirsutum L.) LOX gene GhLOX2. Sequence analysis showed that GhLOX2 is a putative 13‐LOX with a chloroplast‐transit peptide in the amino acid terminus. GhLOX2 was found to be significantly expressed in the first hour of Xcm‐induced HR. Investigation into LOX signalization on cotyledons incubated with methyl‐jasmonate (MeJA) or infiltrated with salicylic acid (SA) or ethylene (ET) revealed that the first two treatments induced GhLOX2 gene expression. Our results show that GhLOX2 gene expression occurred at the stage of the HR prior biochemical events previously highlighted. The role that GhLOX2 may have in the defence strategy of cotton to Xcm is discussed regarding the HR.  相似文献   

19.
20.
Recently the rice (Oryza sativa L.) OsPR1a and OsPR1b genes were primarily characterized against jasmonic acid, ethylene and protein phosphatase 2A inhibitors. The dicot PR1 are recognized as reliable marker genes in defence/stress responses, and we also propose OsPR1 as marker genes in rice, a model monocot crop genus. Therefore, to gain further insight into the expression/regulation of OsPR1 genes, we characterized their activation against signalling molecules such as salicylic acid (SA), abscisic acid (ABA) and hydrogen peroxide (H2O2), and the blast pathogen Magnaporthe grisea. Here, we report that SA and H2O2 strongly induced the mRNA level of both OsPR1 genes, whereas ABA was found to be moderately effective. These inductions were specific in nature and required a de novo synthesized protein factor. A potential interaction amongst the signalling molecules in modulating the expression of OsPR1 genes was observed. Moreover, a specific induction of OsPR1 expression in an incompatible versus compatible host-pathogen interaction was also found. Finally, based on our present and previous results, a model of OsPR1 expression/regulation has been proposed, which reveals their essential role in defence/stress responses in rice and use as potent gene markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号