首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Aquaporin 3 (AQP3) is an aquaglyceroporin that transports water and glycerol and is expressed in the epidermis, among other epithelial tissues. We have recently shown that there is an association between this glycerol channel and phospholipase D2 (PLD2) in caveolin-rich membrane microdomains. While PLD2 is able to hydrolyze membrane phospholipids to generate phosphatidic acid, this enzyme also catalyzes, in the presence of primary alcohols, a transphosphatidylation reaction to produce a phosphatidylalcohol. We have proposed that AQP3 associated with PLD2 provides the physiological primary alcohol glycerol to PLD2 for use in the transphosphatidylation reaction to generate phosphatidylglycerol (PG). Further, we have proposed that PG functions as a signaling molecule to mediate early epidermal keratinocyte differentiation, and manipulation of this signaling module inhibits keratinocyte proliferation and enhances differentiation. In contrast, other investigators have suggested a proliferative role for AQP3 in keratinocytes. In addition, AQP3 knockout mice exhibit an epidermal phenotype, characterized by dry skin, decreased elasticity and delayed barrier repair and wound healing, which can be corrected by glycerol but not other humectants. AQP3 levels have also been found to be altered in human skin diseases. In this article the evidence supporting a role for AQP3 in the epidermis will be discussed.  相似文献   

3.
The aquaporins (AQPs) are a family of transmembrane proteins forming water channels. In mammals, water transport through AQPs is important in kidney and other tissues involved in water transport. Some AQPs (aquaglyceroporins) also exhibit glycerol and urea permeability. Skin is the limiting tissue of the body and within skin, the stratum corneum (SC) of the epidermis is the limiting barrier to water loss by evaporation. The aquaglyceroporin AQP3 is abundantly expressed in keratinocytes of mammalian skin epidermis. Mice lacking AQP3 have dry skin and reduced SC hydration. Interestingly, however, results suggested that impaired glycerol, rather than water transport was responsible for this phenotype. In the present work, we examined the overall expression of AQPs in cells from human skin and we reviewed data on the functional role of AQPs in skin, particularly in the epidermis. By RT-PCR on primary cell cultures, we found that up to 6 different AQPs (AQP1, 3, 5, 7, 9 and 10) may be selectively expressed in various cells from human skin. AQP1, 5 are strictly water channels. But in keratinocytes, the major cell type of the epidermis, only the aquaglyceroporins AQP3, 10 were found. To understand the role of aquaglyceroporins in skin, we examined the relevance to human skin of the conclusion, from studies on mice, that skin AQP3 is only important for glycerol transport. In particular, we find a correlation between the absence of AQP3 and intercellular edema in the epidermis in two different experimental models: eczema and hyperplastic epidermis. In conclusion, we suggest that in addition to glycerol, AQP3 may be important for water transport and hydration in human skin epidermis.  相似文献   

4.
The aquaporins (AQPs) are a family of transmembrane proteins forming water channels. In mammals, water transport through AQPs is important in kidney and other tissues involved in water transport. Some AQPs (aquaglyceroporins) also exhibit glycerol and urea permeability. Skin is the limiting tissue of the body and within skin, the stratum corneum (SC) of the epidermis is the limiting barrier to water loss by evaporation. The aquaglyceroporin AQP3 is abundantly expressed in keratinocytes of mammalian skin epidermis. Mice lacking AQP3 have dry skin and reduced SC hydration. Interestingly, however, results suggested that impaired glycerol, rather than water transport was responsible for this phenotype. In the present work, we examined the overall expression of AQPs in cells from human skin and we reviewed data on the functional role of AQPs in skin, particularly in the epidermis. By RT-PCR on primary cell cultures, we found that up to 6 different AQPs (AQP1, 3, 5, 7, 9 and 10) may be selectively expressed in various cells from human skin. AQP1, 5 are strictly water channels. But in keratinocytes, the major cell type of the epidermis, only the aquaglyceroporins AQP3, 10 were found. To understand the role of aquaglyceroporins in skin, we examined the relevance to human skin of the conclusion, from studies on mice, that skin AQP3 is only important for glycerol transport. In particular, we find a correlation between the absence of AQP3 and intercellular edema in the epidermis in two different experimental models: eczema and hyperplastic epidermis. In conclusion, we suggest that in addition to glycerol, AQP3 may be important for water transport and hydration in human skin epidermis.  相似文献   

5.
Polyunsaturated fatty acids (PUFA) n-3 inhibit inflammation, in vivo and in vitro in keratinocytes. We examined in HaCaT keratinocyte cell line whether eicosapentaenoic acid (EPA) a n-3 PUFA, gamma-linoleic acid (GLA) a n-6 PUFA, and arachidic acid a saturated fatty acid, modulate expression of cyclooxygenase-2 (COX-2), an enzyme pivotal to skin inflammation and reparation. We demonstrate that only treatment of HaCaT with GLA and EPA or a PPARgamma ligand (roziglitazone), induced COX-2 expression (protein and mRNA). Moreover stimulation of COX-2 promoter activity was increased by those PUFAs or rosiglitazone. The inhibitory effects of GW9662 and T0070907 (PPARgamma antagonists), on COX-2 expression and on stimulation of COX-2 promoter activity by EPA and GLA suggest that PPARgamma is implicated in COX-2 induction. Finally, PLA2 inhibitor methyl arachidonyl fluorophosphonate blocked the PUFA effects on COX-2 induction, promoter activity and arachidonic acid mobilization suggesting involvement of AA metabolites in PPAR activation. These findings demonstrate that n-3 and n-6 PUFA increased PPARgamma activity is necessary for the COX-2 induction in HaCaT human keratinocyte cells. Given the anti-inflammatory properties of EPA, we suggest that induction of COX-2 in keratinocytes may be important in the anti-inflammatory and protective mechanism of action of PUFAs n-3 or n-6.  相似文献   

6.
Cao C  Sun Y  Healey S  Bi Z  Hu G  Wan S  Kouttab N  Chu W  Wan Y 《The Biochemical journal》2006,400(2):225-234
AQP3 (aquaporin-3), known as an integral membrane channel in epidermal keratinocytes, facilitates water and glycerol movement into and out of the skin. Here, we demonstrate that AQP3 is also expressed in cultured human skin fibroblasts, which under normal wound healing processes migrate from surrounding tissues to close the wound. EGF (epidermal growth factor), which induced fibroblast migration, also induced AQP3 expression in a time- and dose-dependent manner. CuSO4 and NiCl2, previously known as AQP3 water transport inhibitors, as well as two other bivalent heavy metals Mn2+ and Co2+, inhibited EGF-induced cell migration in human skin fibroblasts. AQP3 knockdown by small interfering RNA inhibited EGF-induced AQP3 expression and cell migration. Furthermore, an EGFR (EGF receptor) kinase inhibitor, PD153035, blocked EGF-induced AQP3 expression and cell migration. MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]/ERK inhibitor U0126 and PI3K (phosphoinositide 3-kinase) inhibitor LY294002 also inhibited EGF-induced AQP3 expression and cell migration. Collectively, our findings show for the first time that AQP3 is expressed in human skin fibroblasts and that EGF induces AQP3 expression via EGFR, PI3K and ERK signal transduction pathways. We have provided evidence for a novel role of AQP3 in human skin fibroblast cell migration, which occurs during normal wound healing.  相似文献   

7.
Leukemia is the most common childhood cancer. Trisenox, the active ingredient of which is trivalent arsenic, is the first line of treatment for acute promyelocytic leukemia. Since drug action usually requires uptake of the drug, it is of importance to determine the transport system responsible for Trisenox uptake. Recently, human aquaglyceroporin 9 (AQP9) has been shown to transport As(III) in Xenopus oocytes. In this study we report to show that AQP9 expression modulates the drug sensitivity of leukemic cells. AQP9 was transfected into the chronic myelogenous leukemia cell line K562. The transfectants became hypersensitive to Trisenox and Sb(III). The promyelocytic leukemia cell line HL60 treated with vitamin D showed higher expression of AQP9 and hypersensitivity to Trisenox and Sb(III). This sensitivity was due to higher rates of uptake of the trivalent metalloids by the cell lines overexpressing AQP9. Trisenox hypersensitivity results from increased expression of AQP9 drug uptake system. The possibility of using pharmacological agents to increase expression of AQP9 gene delivers the promise of new therapies for the treatment of leukemia. Thus, drug hypersensitivity can be correlated with increased expression of the drug uptake system. This is the first demonstration that AQP9 can modulate drug sensitivity in cancer.  相似文献   

8.
目的:探讨白藜芦醇对紫外线照射后人皮肤角质形成细胞水通道蛋白3(AQP3)表达的影响及意义。方法:原代培养人皮肤角质形成细胞,采用UVB(20mJ/cm2,40mJ/cm2)照射角质形成细胞后,立即加入0.1mmol/L的白藜芦醇进行干预。RT-PCR检测照射前后角质形成细胞中AQP3 mRNA的表达量,并用羟胺法、比色法、TBA法检测照射前后细胞超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)活性及丙二醛(MDA)含量。结果:1.UVB照射后角质形成细胞AQP3 mRNA的表达量下降(P<0.05),且UVB照射剂量越大,AQP3 mRNA下降越显著(P<0.05)。2.白藜芦醇能显著增加UVB照射后角质形成细胞SOD和GSH-Px活性,并降低细胞MDA含量(P<0.05)。3.白藜芦醇能显著抑制UVB导致的角质形成细胞AQP3 mRNA下降(P<0.05)。结论:白藜芦醇可能通过抑制UVB导致的AQP3 mRNA下降,及提高氧化酶活性、清除自由基的功能,从而延缓皮肤衰老。  相似文献   

9.
TRPV3 is a Ca2+-permeable cation channel, prominently expressed by keratinocytes where it contributes to maintaining the skin barrier, skin regeneration, and keratinocyte differentiation. However, much less is known about its physiological function in other tissues and there is still a need for identifying novel and efficient TRPV3 channel blockers. By screening a compound library, we identified 26E01 as a novel TRPV3 blocker. 26E01 blocks heterologously expressed TRPV3 channels overexpressed in HEK293 cells as assessed by fluorometric intracellular free Ca2+ assays (IC50 = 8.6 μM) but does not affect TRPV1, TRPV2 or TRPV4 channels. Electrophysiological whole-cell recordings confirmed the reversible block of TRPV3 currents by 26E01, which was also effective in excised inside-out patches, hinting to a rather direct mode of action. 26E01 suppresses endogenous TRPV3 currents in the mouse 308 keratinocyte cell line and in the human DLD-1 colon carcinoma cell line (IC50 = 12 μM). In sections of the gastrointestinal epithelium of mice, the expression of TRPV3 mRNA follows a gradient along the gastrointestinal tract, with the highest expression in the distal colon. 26E01 efficiently attenuates 2-aminoethoxydiphenyl borate-induced calcium influx in primary colonic epithelial cells isolated from the distal colon. As 26E01 neither shows toxic effects on DLD-1 cells at concentrations of up to 100 μM in MTT assays nor on mouse primary colonic crypts as assessed by calcein-AM/propidium iodide co-staining, it may serve as a useful tool to further study the physiological function of TRPV3 in various tissues.  相似文献   

10.
One of the major characteristics of human skin photoaging induced by ultraviolet (UV) radiation is the dehydration of the skin. Water movement across plasma membrane occurs via diffusion through lipid bilayer and via aquaporins (AQPs). We find that UV induces aquaporin-3 (AQP3) down-regulation in human skin keratinocytes. MEK/ERK inhibitors PD98059 and U0126 inhibit UV-induced down-regulation of AQP3. Antioxidant N-acetyl-L-cysteine or NAC blocks UV-induced MEK/ERK activation and down-regulation of AQP3. All-trans retinoic acid or atRA, while alone inducing AQP3 expression, attenuates UV-induced down-regulation of AQP3 and water permeability. Using special inhibitors, we find that activation of EGFR and inhibition on ERK activation are involved in atRA's protective effects against UV-induced AQP3 down-regulation. Using specific AQP3's water transport inhibitors and siRNA knockdown, we observe that AQP3 is involved in cell migration and in vitro wound healing. UV-induced AQP3 down-regulation results in reduced water permeability, decreased cell migration, and delayed wound healing, which are attenuated by atRA pretreatment. We conclude that atRA protects against UV-induced down-regulation AQP3 and decrease in water permeability, reduction in cell migration and delayed in vitro wound healing via trans-activation of EGFR and inhibition on ROS-mediated MEK/ERK pathway. This novel finding provides evidence to support possible involvement of AQP3 in UV induced skin dehydration.  相似文献   

11.
Aquaporin-5 (AQP5) is a water-selective channel protein that is expressed in submucosal glands and alveolar epithelial cells in the lungs. Recent studies have revealed that AQPs regulate not only water metabolism, but also some cellular functions such as cell growth and migration. Here, we report the role of AQP5 in inflammatory responses. In MLE-12 cells, knockdown of AQP5 using siRNA (10–50 nM) attenuated TNF-α-induced expression of keratinocyte chemoattractant (KC) mRNA and protein. Conversely, in NIH-3T3 cells, overexpression of AQP5 increased KC expression, NF-κB activation, and ERK phosphorylation. The AQP5-induced increase of KC expression was diminished by treatment with ERK inhibitors. Taken together, we propose a new function of AQP5 as an inflammatory signal potentiator, which may be mediated by increased activation of ERK and NF-κB.  相似文献   

12.
Inflamed epidermis (psoriasis, wound healing, ultraviolet-irradiated skin) harbors keratinocytes that are hyperproliferative and display an abnormal differentiation program. A distinct feature of this so-called regenerative maturation pathway is the expression of proteins such as the cytokeratins CK6, CK16, and CK17 and the antiinflammatory protein SKALP/elafin. These proteins are absent in normal skin but highly induced in lesional psoriatic skin. Expression of these genes can be used as a surrogate marker for psoriasis in drug-screening procedures of large compound libraries. The aim of this study was to develop a keratinocyte cell line that contained a reporter gene under the control of a psoriasis-associated endogenous promoter and demonstrate its use in an assay suitable for screening. We generated a stably transfected keratinocyte cell line that expresses enhanced green fluorescent protein (EGFP), under the control of a 0.8-kb fragment derived from the promoter of the SKALP/elafin gene, which confers high levels of tissue-specific expression at the mRNA level. Induction of the SKALP promoter by tumor necrosis factor-alpha resulted in increased expression levels of the secreted SKALP-EGFP fusion protein as assessed by direct readout of fluorescence and fluorescence polarization in 96-well cell culture plates. The fold stimulation of the reporter gene was comparable to that of the endogenous SKALP gene as assessed by enzyme-linked immunosorbent assay. Although the dynamic range of the screening system is limited, the small standard deviation yields a Z factor of 0.49. This indicates that the assay is suitable as a high-throughput screen, and provides proof of the concept that a secreted EGFP fusion protein under the control of a physiologically relevant endogenous promoter can be used as a fluorescence-based high-throughput screen for differentiation-modifying or antiinflammatory compounds that act via the keratinocyte.  相似文献   

13.
14.
Aquaporin 4 (AQP4) is an important water channel in the central nervous system which is implicated in several neurological disorders. Due to its significance, the identification of molecules which are able to modulate its activity is quite important for potential therapeutic applications. Here we used a novel screening method involving CHO cell lines which stably express AQP4 to test for potential molecules of interest. Using this method we identified a metal ion, Cu1+, which is able to inhibit AQP4 activity in a cell model, an interaction which has not been previously described. This inhibition was effective at concentrations greater than 500 nM in the CHO cell model, and was confirmed in a proteoliposome based model. Furthermore, the binding sites for Cu1+ inhibition of AQP4 are identified as cysteine 178 and cysteine 253 on the intracellular domain of the protein via the synthesis of AQP4 containing point mutations to remove these cysteines. These results suggest that Cu1+ is able to access intracellular binding sites and inhibit AQP4 in a cell based model.  相似文献   

15.
BACKGROUND INFORMATION: Efferent ductules reabsorb more than 90% of the rete testis fluid, a process that involves ion transporters and AQP (aquaporin) water channels. Oestrogen has been shown to modulate the expression of the ion transporters involved in this activity, but reports of AQP regulation in the male tract have been confounding. To understand better the regulation of AQP1 and AQP9, we investigated their expression in rat efferent ductules and initial segment of the epididymis after treatment with the pure antioestrogen ICI 182,780 or bilateral efferent duct ligation, or castration, followed by hormone replacement. RESULTS: Results show that AQP9 is modulated by oestrogen in the efferent ductule epithelium, but not in the initial segment of the epididymis. DHT (5alpha-dihydrotestosterone) also modulated AQP9 in efferent ductules. AQP9 was down-regulated by the antioestrogen in efferent ductules on day 45 post-treatment, which occurred before the non-ciliated cells had shown significant loss of microvilli. DHT, but not oestradiol, modulated AQP9 expression in the initial segment of the epididymis. In contrast, testosterone, DHT, oestrogen or the antioestrogen did not alter AQP1 staining, indicating constitutive expression of AQP1 in the efferent ductule epithelium. AQP1 expression was induced in peritubular cells of efferent ductules and in the initial segment of the epididymis after castration and long-term treatment with the antioestrogen. Although peritubular AQP1 staining in efferent ductules was partially reversed by the androgens, it was not reversed after any treatment in the initial segment of the epididymis. CONCLUSIONS: These results demonstrate that efferent ductules are unique in requiring both oestrogen and androgen to regulate an important mediator of fluid reabsorption, whereas the initial segment is dependent only on androgen stimulation.  相似文献   

16.
Increasing evidence suggests that adrenomedullin (AM) and corticotrophin (ACTH) are immunomodulatory. Intercellular adhesion molecule-1 (ICAM-1) plays an important role in the recruitment of leukocytes not only from peripheral blood into inflamed tissues but also into epithelia. We have investigated the effects of AM and ACTH on the expression of ICAM-1 by human oral keratinocytes. The human oral keratinocyte cell line H357 was incubated with either AM or ACTH for up to 8 hrs and ICAM-1 expression was measured by cell surface ELISA. ICAM-1 was up regulated by both peptides and this was attenuated by the adenylyl cyclase inhibitor SQ22,536 and the NF-kappaB inhibitor SN-50. H357 cells constitutively express ICAM-1 mRNA and expression of this gene was significantly modulated by AM and ACTH. Furthermore AM caused translocation of NF-kappaB from the cytoplasm to the nucleus. This is the first report describing up regulation of ICAM-1 in oral keratinocytes by AM and ACTH and the results suggest both cAMP and NF-kappaB may play a role. These results further suggest both peptides may have an immunostimulatory role in oral muocsa and skin.  相似文献   

17.
18.
Aquaporins are transmembrane protein channels which are known to help the passage of water and solutes across the cell membranes. AQP1, AQP3 and AQP5 are isoforms of aquaporin known to aid in transepithelial water movement. AQP3 is also known to aid in glycerol transport. The present study was conducted to investigate the role of AQP1, AQP3 and AQP5 in thermoregulation of buffaloes by probing the expression of the genes in skin of buffaloes during different season viz. winter, spring and summer. The skin tissue samples were collected from the neck region of Murrah buffaloes (n = 12) and analyzed for gene expression by RT-PCR and immunolocalization. The physiological responses including respiration rate, rectal temperature and neck skin temperature observed during summer were significantly higher than winter and spring seasons. The study revealed the expression of AQP1, AQP3 and AQP5 genes in skin samples. The relative mRNA expressions of AQP1, AQP3 and AQP5 in skin relative to spring season were 1.41 ± 0.47, 1.95 ± 0.22 and 6.77 ± 1.02 folds during summer which were significantly higher than other seasons. The up-regulation of the expression of the studied AQPs were concomitant with the increase in physiological responses including skin temperature and sweating rate during summer. During summer season, AQP1 were mostly immunolocalized in the walls of skin blood capillaries, while AQP3 were observed mostly in the epidermal layer of the skin. The immunolocalization of AQP5 were mostly observed in the secretory glands of skin. The up-regulation of AQP1, AQP3 and AQP5 in skin during summer season indicates their role in thermoregulation of buffaloes.  相似文献   

19.
Aquaporin-3 (AQP3) is a water/glycerol-transporting protein expressed strongly at the plasma membranes of basal epidermal cells in skin. We found that human skin squamous cell carcinoma strongly overexpresses AQP3. A novel role for AQP3 in skin tumorigenesis was discovered using mice with targeted AQP3 gene disruption. We found that AQP3-null mice were remarkably resistant to the development of skin tumors following exposure to a tumor initiator and phorbol ester promoter. Though tumor initiator challenge produced comparable apoptotic responses in wild-type and AQP3-null mice, promoter-induced cell proliferation was greatly impaired in the AQP3-null epidermis. Reductions of epidermal cell glycerol, its metabolite glycerol-3-phosphate, and ATP were found in AQP3 deficiency without impairment of mitochondrial function. Glycerol supplementation corrected the reduced proliferation and ATP content in AQP3 deficiency, with cellular glycerol, ATP, and proliferative ability being closely correlated. Our data suggest involvement of AQP3-facilitated glycerol transport in epidermal cell proliferation and tumorigenesis by a novel mechanism implicating cellular glycerol as a key determinant of cellular ATP energy. AQP3 may thus be an important determinant in skin tumorigenesis and hence a novel target for tumor prevention and therapy.  相似文献   

20.

Purpose

The aquaporin (AQP) family consists of a number of small integral membrane proteins that transport water and glycerol. AQPs are critical for trans-epithelial fluid transport. Recent reports demonstrated that AQPs, particularly AQP1 and AQP5, are expressed in high grade tumor cells of a variety of tissue origins, and that AQPs are involved in cell migration and metastasis. Based on this background, we examined whether AQP3, another important member of the AQP family, could facilitate cell migration in human breast cancers.

Methods

Potential role of AQP3 was examined using two representative breast cancer cell lines (MDA-MB-231 and Bcap-37). Briefly, AQP3 expression was inhibited with a lentivirus construct that stably expressed shRNA against the AQP3 mRNA. AQP3 expression inhibition was verified with Western blot. Cell migration was examined using a wound scratch assay in the presence of fibroblast growth factor-2 (FGF-2). In additional experiments, AQP3 was inhibited by CuSO4. Fibroblast growth factor receptor (FGFR) kinase inhibitor PD173074, PI3K inhibitor LY294002, and MEK1/2 inhibitor PD98059 were used to dissect the molecular mechanism of FGF-2 induced AQP3 expression.

Results

FGF-2 treatment increased AQP3 expression and induced cell migration in a dose dependent manner. Silencing AQP3 expression by a lentiviral shRNA inhibited FGF-2 induced cell migration. CuSO4, a water transport inhibitor selective for AQP3, also suppressed FGF-2-induced cell migration. The FGFR kinase inhibitor PD173074, significantly inhibited FGF-2-induced AQP3 expression and cell migration. The PI3K inhibitor LY294002 and MEK1/2 inhibitor PD98059 inhibited, but not fully blocked, FGF-2-induced AQP3 expression and cell migration.

Conclusions

AQP3 is required for FGF-2-induced cell migration in cultured human breast cancer cells. Our findings also suggest the importance of FGFR-PI3K and FGFR-ERK signaling in FGF-2-induced AQP3 expression. In summary, our findings suggest a novel function of AQP3 in cell migration and metastasis of breast cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号