首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The C-terminal domain (C(t)-FDH) of 10-formyltetrahydrofolate dehydrogenase (FDH, ALDH1L1) is an NADP(+)-dependent oxidoreductase and a structural and functional homolog of aldehyde dehydrogenases. Here we report the crystal structures of several C(t)-FDH mutants in which two essential catalytic residues adjacent to the nicotinamide ring of bound NADP(+), Cys-707 and Glu-673, were replaced separately or simultaneously. The replacement of the glutamate with an alanine causes irreversible binding of the coenzyme without any noticeable conformational changes in the vicinity of the nicotinamide ring. Additional replacement of cysteine 707 with an alanine (E673A/C707A double mutant) did not affect this irreversible binding indicating that the lack of the glutamate is solely responsible for the enhanced interaction between the enzyme and the coenzyme. The substitution of the cysteine with an alanine did not affect binding of NADP(+) but resulted in the enzyme lacking the ability to differentiate between the oxidized and reduced coenzyme: unlike the wild-type C(t)-FDH/NADPH complex, in the C707A mutant the position of NADPH is identical to the position of NADP(+) with the nicotinamide ring well ordered within the catalytic center. Thus, whereas the glutamate restricts the affinity for the coenzyme, the cysteine is the sensor of the coenzyme redox state. These conclusions were confirmed by coenzyme binding experiments. Our study further suggests that the binding of the coenzyme is additionally controlled by a long-range communication between the catalytic center and the coenzyme-binding domain and points toward an α-helix involved in the adenine moiety binding as a participant of this communication.  相似文献   

2.
NADPH-cytochrome P450 oxidoreductase catalyzes transfer of electrons from NADPH, via two flavin cofactors, to various cytochrome P450s. The crystal structure of the rat reductase complexed with NADP(+) has revealed that nicotinamide access to FAD is blocked by an aromatic residue (Trp-677), which stacks against the re-face of the isoalloxazine ring of the flavin. To investigate the nature of interactions between the nicotinamide, FAD, and Trp-677 during the catalytic cycle, three mutant proteins were studied by crystallography. The first mutant, W677X, has the last two C-terminal residues, Trp-677 and Ser-678, removed; the second mutant, W677G, retains the C-terminal serine residue. The third mutant has the following three catalytic residues substituted: S457A, C630A, and D675N. In the W677X and W677G structures, the nicotinamide moiety of NADP(+) lies against the FAD isoalloxazine ring with a tilt of approximately 30 degrees between the planes of the two rings. These results, together with the S457A/C630A/D675N structure, allow us to propose a mechanism for hydride transfer regulated by changes in hydrogen bonding and pi-pi interactions between the isoalloxazine ring and either the nicotinamide ring or Trp-677 indole ring. Superimposition of the mutant and wild-type structures shows significant mobility between the two flavin domains of the enzyme. This, together with the high degree of disorder observed in the FMN domain of all three mutant structures, suggests that conformational changes occur during catalysis.  相似文献   

3.
Roitel O  Scrutton NS  Munro AW 《Biochemistry》2003,42(36):10809-10821
Cys-999 is one component of a triad (Cys-999, Ser-830, and Asp-1044) located in the FAD domain of flavocytochrome P450 BM3 that is almost entirely conserved throughout the diflavin reductase family of enzymes. The role of Cys-999 has been studied by steady-state kinetics, stopped-flow spectroscopy, and potentiometry. The C999A mutants of BM3 reductase (containing both FAD and FMN cofactors) and the isolated FAD domain are substantially compromised in their capacity to reduce artificial electron acceptors in steady-state turnover with either NADPH or NADH as electron donors. Stopped-flow studies indicate that this is due primarily to a substantially slower rate of hydride transfer from nicotinamide coenzyme to FAD cofactor in the C999A enzymes. The compromised rates of hydride transfer are not attributable to altered thermodynamic properties of the flavins. A reduced enzyme-NADP(+) charge-transfer species is populated following hydride transfer in the wild-type FAD domain, consistent with the slow release of NADP(+) from the 2-electron-reduced enzyme. This intermediate does not accumulate in the C999A FAD domain or wild-type and C999A BM3 reductases, suggesting more rapid release of NADP(+) from these enzyme forms. Rapid internal electron transfer from FAD to FMN in wild-type BM3 reductase releases NADP(+) from the nicotinamide-binding site, thus preventing the inhibition of enzyme activity through the accumulation of a stable FADH(2)-NADP(+) charge-transfer complex. Hydride transfer is reversible, and the observed rate of oxidation of the 2-electron-reduced C999A BM3 reductase and FAD domain is hyperbolically dependent on NADP(+) concentration. With the wild-type BM3 reductase and FAD domain, the rate of flavin oxidation displays an unusual dependence on NADP(+) concentration, consistent with a two-site binding model in which two coenzyme molecules bind to catalytic and regulatory regions (or sites) within a bipartite coenzyme binding site. A kinetic model is proposed in which binding of coenzyme to the regulatory site hinders sterically the release of NADPH from the catalytic site. The results are discussed in the light of kinetic and structural studies on mammalian cytochrome P450 reductase.  相似文献   

4.
The primary structure of the aldose xylose reductase from Candida tenuis (CtAR) is shown to be 39% identical to that of human aldose reductase (hAR). The catalytic tetrad of hAR is completely conserved in CtAR (Tyr51, Lys80, Asp46, His113). The amino acid residues involved in binding of NADPH by hAR (D.K. Wilson, et al., Science 257 (1992) 81-84) are 64% identical in CtAR. Like hAR the yeast enzyme is specific for transferring the 4-pro-R hydrogen of the coenzyme. These properties suggest that CtAR is a member of the aldo/keto reductase superfamily. Unlike hAR the enzyme from C. tenuis has a dual coenzyme specificity and shows similar specificity constants for NADPH and NADH. It binds NADP(+) approximately 250 times less tightly than hAR. Typical turnover numbers for aldehyde reduction by CtAR (15-20 s(-1)) are up to 100-fold higher than corresponding values for hAR, probably reflecting an overall faster dissociation of NAD(P)(+) in the reaction catalyzed by the yeast enzyme.  相似文献   

5.
Ciona intestinalis voltage-sensing phosphatase (Ci-VSP) has a transmembrane voltage sensor domain and a cytoplasmic region sharing similarity to the phosphatase and tensin homolog (PTEN). It dephosphorylates phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon membrane depolarization. The cytoplasmic region is composed of a phosphatase domain and a putative membrane interaction domain, C2. Here we determined the crystal structures of the Ci-VSP cytoplasmic region in three distinct constructs, wild-type (248-576), wild-type (236-576), and G365A mutant (248-576). The crystal structure of WT-236 and G365A-248 had the disulfide bond between the catalytic residue Cys-363 and the adjacent residue Cys-310. On the other hand, the disulfide bond was not present in the crystal structure of WT-248. These suggest the possibility that Ci-VSP is regulated by reactive oxygen species as found in PTEN. These structures also revealed that the conformation of the TI loop in the active site of the Ci-VSP cytoplasmic region was distinct from the corresponding region of PTEN; Ci-VSP has glutamic acid (Glu-411) in the TI loop, orienting toward the center of active site pocket. Mutation of Glu-411 led to acquirement of increased activity toward phosphatidylinositol 3,5-bisphosphate, suggesting that this site is required for determining substrate specificity. Our results provide the basic information of the enzymatic mechanism of Ci-VSP.  相似文献   

6.
The role of the highly conserved C266 and L268 of pea ferredoxin-NADP(+) reductase (FNR) in formation of the catalytically competent complex of the enzyme with NADP(H) was investigated. Previous studies suggest that the volume of these side-chains, situated facing the side of the C-terminal Y308 catalytic residue not stacking the flavin isoalloxazine ring, may be directly involved in the fine-tuning of the catalytic efficiency of the enzyme. Wild-type pea FNR as well as single and double mutants of C266 and L268 residues were analysed by fast transient-kinetic techniques and their midpoint reduction potentials were determined. For the C266A, C266M and C266A/L268A mutants a significant reduction in the overall hydride transfer (HT) rates was observed along with the absence of charge-transfer complex formation. The HT rate constants for NADPH oxidation were lower than those for NADP(+) reduction, reaching a 30-fold decrease in the double mutant. In agreement, these variants exhibited more negative midpoint potentials with respect to the wild-type enzyme. The three-dimensional structures of C266M and L268V variants were solved. The C266M mutant shows a displacement of E306 away from the relevant residue S90 to accommodate the bulky methionine introduced. The overall findings indicate that in FNR the volume of the residue at position 266 is essential to attain the catalytic architecture between the nicotinamide and isoalloxazine rings at the active site and, therefore, for an efficient HT process. In addition, flexibility of the 268-270 loop appears to be critical for FNR to achieve catalytically competent complexes with NADP(H).  相似文献   

7.
The kinetics of flavin reduction in two mutant forms of human cytochrome P450 reductase have been studied by stopped-flow spectroscopy with absorption and fluorescence detection. The mutant enzymes were altered at the position of Trp-676, which, by analogy with the structure of rat CPR, is close to the isoalloxazine ring of the enzyme-bound FAD. We show that mutant CPRs in which Trp-676 has been changed to histidine (W676H) and alanine (W676A) can be reduced by NADPH only to the two-electron level in single mixing stopped-flow experiments. The concentration dependence of the rate of hydride transfer indicates that the second, noncatalytic NADPH-binding site present in wild-type CPR is retained in the mutant enzymes. Detailed studies of W676H CPR indicate that further reduction of the enzyme beyond the two electron level is prevented due to the slow release of NADP(+) from the active site following the first hydride transfer from NADPH, owing to the stability of a reduced enzyme-NADP(+) charge-transfer complex. Reduction to the four-electron level is achieved in a sequential mixing stopped-flow experiment. In this procedure, W676H CPR is reacted first with a stoichiometric amount of NADPH, and then, following a delay of 100 ms, with excess NADPH. The data indicate that occupancy of the noncatalytic coenzyme site also hinders NADP(+) release from reduced enzyme. Fluorescence stopped-flow studies of the W676H and wild-type CPR enzymes reveal that the complex signals associated with reduction of wild-type CPR by NADPH are attributable to changes in the environment of residue W676. From these studies, a model is proposed for nicotinamide binding in wild-type CPR. In this model W676 serves as a trigger to release NADP(+) from the active site following hydride transfer. In the W676H enzyme, the slow release of NADP(+) is a consequence of the combined effects of (i) removing W676 by mutagenesis (thus removing the trigger for displacement) and (ii) the binding of NADPH in the noncatalytic site, thus trapping NADP(+) in the catalytic site.  相似文献   

8.
The beta-subunit of the voltage-sensitive K(+) (K(v)) channels belongs to the aldo-keto reductase superfamily, and the crystal structure of K(v)beta2 shows NADP bound in its active site. Here we report that K(v)beta2 displays a high affinity for NADPH (K(d) = 0.1 micrometer) and NADP(+) (K(d) = 0.3 micrometer), as determined by fluorometric titrations of the recombinant protein. The K(v)beta2 also bound NAD(H) but with 10-fold lower affinity. The site-directed mutants R264E and N333W did not bind NADPH, whereas, the K(d)(NADPH) of Q214R was 10-fold greater than the wild-type protein. The K(d)(NADPH) was unaffected by the R189M, W243Y, W243A, or Y255F mutation. The tetrameric structure of the wild-type protein was retained by the R264E mutant, indicating that NADPH binding is not a prerequisite for multimer formation. A C248S mutation caused a 5-fold decrease in K(d)(NADPH), shifted the pK(a) of K(d)(NADPH) from 6.9 to 7.4, and decreased the ionic strength dependence of NADPH binding. These results indicate that Arg-264 and Asn-333 are critical for coenzyme binding, which is regulated in part by Cys-248. The binding of both NADP(H) and NAD(H) to the protein suggests that several types of K(v)beta2-nucleotide complexes may be formed in vivo.  相似文献   

9.
10.
Aldehyde dehydrogenase-2 (ALDH2) catalyzes the bioactivation of nitroglycerin (glyceryl trinitrate, GTN) in blood vessels, resulting in vasodilation by nitric oxide (NO) or a related species. Because the mechanism of this reaction is still unclear we determined the three-dimensional structures of wild-type (WT) ALDH2 and of a triple mutant of the protein that exhibits low denitration activity (E268Q/C301S/C303S) in complex with GTN. The structure of the triple mutant showed that GTN binds to the active site via polar contacts to the oxyanion hole and to residues 268 and 301 as well as by van der Waals interactions to hydrophobic residues of the catalytic pocket. The structure of the GTN-soaked wild-type protein revealed a thionitrate adduct to Cys-302 as the first reaction intermediate, which was also found by mass spectrometry (MS) experiments. In addition, the MS data identified sulfinic acid as the irreversibly inactivated enzyme species. Assuming that the structures of the triple mutant and wild-type ALDH2 reflect binding of GTN to the catalytic site and the first reaction step, respectively, superposition of the two structures indicates that denitration of GTN is initiated by nucleophilic attack of Cys-302 at one of the terminal nitrate groups, resulting in formation of the observed thionitrate intermediate and release of 1,2-glyceryl dinitrate. Our results shed light on the molecular mechanism of the GTN denitration reaction and provide useful information on the structural requirements for high affinity binding of organic nitrates to the catalytic site of ALDH2.  相似文献   

11.
The crystal structure of NADPH-cytochrome P450 reductase (CYPOR) implies that a large domain movement is essential for electron transfer from NADPH via FAD and FMN to its redox partners. To test this hypothesis, a disulfide bond was engineered between residues Asp(147) and Arg(514) in the FMN and FAD domains, respectively. The cross-linked form of this mutant protein, designated 147CC514, exhibited a significant decrease in the rate of interflavin electron transfer and large (≥90%) decreases in rates of electron transfer to its redox partners, cytochrome c and cytochrome P450 2B4. Reduction of the disulfide bond restored the ability of the mutant to reduce its redox partners, demonstrating that a conformational change is essential for CYPOR function. The crystal structures of the mutant without and with NADP(+) revealed that the two flavin domains are joined by a disulfide linkage and that the relative orientations of the two flavin rings are twisted ~20° compared with the wild type, decreasing the surface contact area between the two flavin rings. Comparison of the structures without and with NADP(+) shows movement of the Gly(631)-Asn(635) loop. In the NADP(+)-free structure, the loop adopts a conformation that sterically hinders NADP(H) binding. The structure with NADP(+) shows movement of the Gly(631)-Asn(635) loop to a position that permits NADP(H) binding. Furthermore, comparison of these mutant and wild type structures strongly suggests that the Gly(631)-Asn(635) loop movement controls NADPH binding and NADP(+) release; this loop movement in turn facilitates the flavin domain movement, allowing electron transfer from FMN to the CYPOR redox partners.  相似文献   

12.
Ma H  Ratnam K  Penning TM 《Biochemistry》2000,39(1):102-109
Rat liver 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD), an aldo-keto reductase, binds NADP(+) in an extended anti-conformation across an (alpha/beta)(8)-barrel. The orientation of the nicotinamide ring, which permits stereospecific transfer of the 4-pro-R hydride from NAD(P)H to substrate, is achieved by hydrogen bonds formed between the C3-carboxamide of the nicotinamide ring and Ser 166, Asn 167, and Gln 190 and by pi-stacking between this ring and Tyr 216. These residues were mutated to yield S166A, N167A, Q190A, and Y216S. In these mutants, K(d)(NADP(H)) increased by 2-11-fold but without a significant change in K(d)(NAD(H)). Steady-state kinetic parameters showed that K(m)(NADP)()+ increased 13-151-fold, and this was accompanied by comparable decreases in k(cat)/K(m)(NADP)()+. By contrast, K(m)(NAD)()+ increased 4-8-fold, but changes in k(cat)/K(m)(NAD)()+ were more dramatic and ranged from 23- to 930-fold. Corresponding changes in binding energies indicated that each residue contributed equally to the binding of NADP(H) in the ground and transition states. However, the same residues stabilized the binding of NAD(H) only in the transition state. These observations suggest that different modes of binding exist for NADP(H) and NAD(H). Importantly, these modes were revealed by mutating residues in the nicotinamide pocket indicating that direct interactions with the 2'-phosphate in the adenine mononucleotide is not the sole determinant of cofactor preference. The single mutations were unable to invert or racemize the stereochemistry of hydride transfer even though the nicotinamide pocket can accommodate both anti- and syn-conformers once the necessary hydrogen bonds are eliminated. When 4-pro-R-[(3)H]NADH was used to monitor incorporation into [(14)C]-5alpha-dihydrotestosterone, a decrease in the (3)H:(14)C ratio was observed in the mutants relative to wild-type enzyme reflecting a pronounced primary kinetic isotope effect. This observation coupled with the change in the binding energy for NAD(P)(H) in the transition state suggests that these mutants have altered the reaction trajectory for hydride transfer.  相似文献   

13.
The crystal structure of sheep liver 6-phosphogluconate dehydrogenase (6PGDH) shows marked differences in the position of the nicotinamide mononucleotide (NMN) moiety of NADP(+) and NADPH (Adams, J. M., Grant, H. E., Gover, S., Naylor, C. E., and Phillips, C. (1994) Structure 2, 651-668). A methionine side chain (Met13) interacts with the si face of NADP(+) in the complex with the oxidized coenzyme, is likely to affect the binding mode of the nicotinamide ring of NADP(+), and may play a role in catalysis in the 6PGDH reaction. To check this possibility we performed site-directed mutagenesis, changing M13 to a number of residues including V, I, C, F, and Q. Mutant enzymes were characterized with respect to their kinetic parameters and primary deuterium isotope effects. All mutations resulted in a decrease in affinity of the enzyme for NADP(+), but not NADPH. In addition, the M13 to C (M13C), M13F, and M13Q mutant enzymes exhibited a decrease of at least an order of magnitude in V/E(t). The deuterium isotope effects on V and V/K(6PG) were decreased to about 1.2 for the M13F and M13C mutant enzymes, while they were increased to about 2.4 for the M13Q enzyme (a value of 1.8-1.9 is obtained for the wild-type enzyme). In at least three instances changes in the overall rate of the oxidative decarboxylation reaction relative to other steps along the reaction pathway were observed. Isotope effects indicate that the hydride transfer steps can become either more or less rate-determining dependent on the substitution. Data are consistent with a significant role of M13 in the orientation of the cofactor nicotinamide ring in the mechanism of 6PGDH, likely with respect to geometry and distance of the ring from C3 of 6PG.  相似文献   

14.
A bacterial flavin-containing monooxygenase (bFMO) catalyses the oxygenation of indole to produce indigoid compounds. In the reductive half of the indole oxygenation reaction, NADPH acts as a reducing agent, and NADP(+) remains at the active site, protecting bFMO from reoxidation. Here, the crystal structures of bFMO and bFMO in complex with NADP(+), and a mutant bFMO(Y207S), which lacks indole oxygenation activity, with and without indole are reported. The crystal structures revealed overlapping binding sites for NADP(+) and indole, suggestive of a double-displacement reaction mechanism for bFMO. In biochemical assays, indole inhibited NADPH oxidase activity, and NADPH in turn inhibited the binding of indole and decreased indoxyl production. Comparison of the structures of bFMO with and without bound NADP(+) revealed that NADPH induces conformational changes in two active site motifs. One of the motifs contained Arg-229, which participates in interactions with the phosphate group of NADPH and appears be a determinant of the preferential binding of bFMO to NADPH rather than NADH. The second motif contained Tyr-207. The mutant bFMO(Y207S) exhibited very little indoxyl producing activity; however, the NADPH oxidase activity of the mutant was higher than the wild-type enzyme. It suggests a role for Y207, in the protection of hydroperoxyFAD. We describe an indole oxygenation reaction mechanism for bFMO that involves a ping-pong-like interaction of NADPH and indole.  相似文献   

15.
Cys-281, Cys-344, or Cys-349 in the proline carrier of Escherichia coli was changed to a serine residue by site-specific mutagenesis. The activities of the resultant mutants for uptake of proline were as great as that of the wild-type strain. These mutant carriers were all as sensitive as the wild-type carrier to the proline analogue azetidine 2-carboxylate. However, the mutant carriers with Ser-281 and Ser-344 were resistant to N-ethylmaleimide, whereas the mutant carrier with Ser-349 was as sensitive as the wild-type carrier to this reagent. These results indicate that these cysteine residues are not essential for proline transport and that Cys-281 and Cys-344 may be close to the substrate-binding site that contains an N-ethylmaleimide-sensitive residue.  相似文献   

16.
L Zhang  B Ahvazi  R Szittner  A Vrielink  E Meighen 《Biochemistry》1999,38(35):11440-11447
The fatty aldehyde dehydrogenase from the luminescent bacterium, Vibrio harveyi (Vh-ALDH), is unique with respect to its high specificity for NADP(+) over NAD(+). By mutation of a single threonine residue (Thr175) immediately downstream of the beta(B) strand in the Rossmann fold, the nucleotide specificity of Vh-ALDH has been changed from NADP(+) to NAD(+). Replacement of Thr175 by a negatively charged residue (Asp or Glu) resulted in an increase in k(cat)/K(m) for NAD(+) relative to that for NADP(+) of up to 5000-fold due to a decrease for NAD(+) and an increase for NADP(+) in their respective Michaelis constants (K(a)). Differential protection by NAD(+) and NADP(+) against thermal inactivation and comparison of the dissociation constants of NMN, 2'-AMP, 2'5'-ADP, and 5'-AMP for these mutants and the wild-type enzyme clearly support the change in nucleotide specificity. Moreover, replacement of Thr175 with polar residues (N, S, or Q) demonstrated that a more efficient NAD(+)-dependent enzyme T175Q could be created without loss of NADP(+)-dependent activity. Analysis of the three-dimensional structure of Vh-ALDH with bound NADP(+) showed that the hydroxyl group of Thr175 forms a hydrogen bond to the 2'-phosphate of NADP(+). Replacement with glutamic acid or glutamine strengthened interactions with NAD(+) and indicated why threonine would be the preferred polar residue at the nucleotide recognition site in NADP(+)-specific aldehyde dehydrogenases. These results have shown that the size and the structure of the residue at the nucleotide recognition site play the key roles in differentiating between NAD(+) and NADP(+) interactions while the presence of a negative charge is responsible for the decrease in interactions with NADP(+) in Vh-ALDH.  相似文献   

17.
The catalytic domain of XynCDBFV, a glycoside hydrolase family 11 (GH11) xylanase from ruminal fungus Neocallimastix patriciarum previously engineered to exhibit higher specific activity and broader pH adaptability, holds great potential in commercial applications. Here, the crystal structures of XynCDBFV and its complex with substrate were determined to 1.27–1.43 Å resolution. These structures revealed a typical GH11 β-jelly-roll fold and detailed interaction networks between the enzyme and ligands. Notably, an extended N-terminal region (NTR) consisting of 11 amino acids was identified in the XynCDBFV structure, which is found unique among GH11 xylanases. The NTR is attached to the catalytic core by hydrogen bonds and stacking forces along with a disulfide bond between Cys-4 and Cys-172. Interestingly, the NTR deletion mutant retained 61.5% and 19.5% enzymatic activity at 55 °C and 75 °C, respectively, compared with the wild-type enzyme, whereas the C4A/C172A mutant showed 86.8% and 23.3% activity. These results suggest that NTR plays a role in XynCDBFV thermostability, and the Cys-4/Cys-172 disulfide bond is critical to the NTR-mediated interactions. Furthermore, we also demonstrated that Pichia pastoris produces XynCDBFV with higher catalytic activity at higher temperature than Escherichia coli, in which incorrect NTR folding and inefficient disulfide bond formation might have occurred. In conclusion, these structural and functional analyses of the industrially favored XynCDBFV provide a molecular basis of NTR contribution to its thermostability.  相似文献   

18.
Serotonin transporter (SERT) contains a single reactive external cysteine residue at position 109 (Chen, J. G., Liu-Chen, S., and Rudnick, G. (1997) Biochemistry 36, 1479-1486) and seven predicted cytoplasmic cysteines. A mutant of rat SERT (X8C) in which those eight cysteine residues were replaced by other amino acids retained approximately 32% of wild type transport activity and approximately 56% of wild type binding activity. In contrast to wild-type SERT or the C109A mutant, X8C was resistant to inhibition of high affinity cocaine analog binding by the cysteine reagent 2-(aminoethyl)methanethiosulfonate hydrobromide (MTSEA) in membrane preparations from transfected cells. Each predicted cytoplasmic cysteine residue was reintroduced, one at a time, into the X8C template. Reintroduction of Cys-357, located in the third intracellular loop, restored MTSEA sensitivity similar to that of C109A. Replacement of only Cys-109 and Cys-357 was sufficient to prevent MTSEA sensitivity. Thus, Cys-357 was the sole cytoplasmic determinant of MTSEA sensitivity in SERT. Both serotonin and cocaine protected SERT from inactivation by MTSEA at Cys-357. This protection was apparently mediated through a conformational change following ligand binding. Although both ligands bind in the absence of Na(+) and at 4 degrees C, their ability to protect Cys-357 required Na(+) and was prevented at 4 degrees C. The accessibility of Cys-357 to MTSEA inactivation was increased by monovalent cations. The K(+) ion, which is believed to serve as a countertransport substrate for SERT, was the most effective ion for increasing Cys-357 reactivity.  相似文献   

19.
Pyridine Nucleotide Transhydrogenase from Azotobacter vinelandii   总被引:5,自引:0,他引:5       下载免费PDF全文
A method is described for the partial purification of pyridine nucleotide transhydrogenase from Azotobacter vinelandii (ATCC 9104) cells. The most highly purified preparation catalyzes the reduction of 300 mumoles of nicotinamide adenine dinucleotide (NAD(+)) per min per mg of protein under the assay conditions employed. The enzyme catalyzes the reduction of NAD(+), deamino-NAD(+), and thio-NAD(+) with reduced nicotinamide adenine dinucleotide phosphate (NADPH) as hydrogen donor, and the reduction of nicotinamide adenine dinucleotide phosphate (NADP(+)) and thio-NAD(+) with reduced NAD (NADH) as hydrogen donor. The reduction of acetylpyridine AD(+), pyridinealdehyde AD(+), acetylpyridine deamino AD(+), and pyridinealdehydedeamino AD(+) with NADPH as hydrogen donor was not catalyzed. The enzyme catalyzes the transfer of hydrogen more readily from NADPH than from NADH with different hydrogen acceptors. The transfer of hydrogen from NADH to NADP(+) and thio-NAD(+) was markedly stimulated by 2'-adenosine monophosphate (2'-AMP) and inhibited by adenosine diphosphate (ADP), adenosine triphosphate (ATP), and phosphate ions. The transfer of hydrogen from NADPH to NAD(+) was only slightly affected by phosphate ions and 2'-AMP, except at very high concentrations of the latter reagent. In addition, the transfer of hydrogen from NADPH to thio-NAD(+) was only slightly influenced by 2'-AMP, ADP, ATP, and other nucleotides. The kinetics of the transhydrogenase reactions which utilized thio-NAD(+) as hydrogen acceptor and NADH or NADPH as hydrogen donor were studied in some detail. The results suggest that there are distinct binding sites for NADH and NAD(+) and perhaps a third regulator site for NADP(+) or 2'-AMP. The heats of activation for the transhydrogenase reactions were determined. The properties of this enzyme are compared with those of other partially purified transhydrogenases with respect to the regulatory functions of 2'-AMP and other nucleotides on the direction of flow of hydrogen between NAD(+) and NADP(+).  相似文献   

20.
Chloroplast ferredoxin-NADP(+) reductase has a 32,000-fold preference for NADPH over NADH, consistent with its main physiological role of NADP(+) photoreduction for de novo carbohydrate biosynthesis. Although it is distant from the 2'-phosphoryl group of NADP(+), replacement of the C-terminal tyrosine (Tyr(308) in the pea enzyme) by Trp, Phe, Gly, and Ser produced enzyme forms in which the preference for NADPH over NADH was decreased about 2-, 10-, 300-, and 400-fold, respectively. Remarkably, in the case of the Y308S mutant, the k(cat) value for the NADH-dependent activity approached that of the NADPH-dependent activity of the wild-type enzyme. Furthermore, difference spectra of the NAD(+) complexes revealed that the nicotinamide ring of NAD(+) binds at nearly full occupancy in the active site of both the Y308G and Y308S mutants. These results correlate well with the k(cat) values obtained with these mutants in the NADH-ferricyanide reaction. The data presented support the hypothesis that specific recognition of the 2'-phosphate group of NADP(H) is required but not sufficient to ensure a high degree of discrimination against NAD(H) in ferredoxin-NADP(+) reductase. Thus, the C-terminal tyrosine enhances the specificity of the reductase for NADP(H) by destabilizing the interaction of a moiety common to both coenzymes, i.e. the nicotinamide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号