首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Abstract Helicobacter pylori is a bacterial pathogen of humans that infects the gastric mucosa. This infection has been associated with gastritis, peptic ulcers, and gastric carcinomas. Diverse in vitro studies have described efficient adherence of H. pylori to different types of epithelial cells. Because of its varied effects on host cells, we have analysed signal transduction events in H. pyfori -infected epithelial cells. Our results show that H. pylori induces an increase in inositol phosphates in all cultured epithelial cells used, including HeLa, Henle 407, Hep-2, and the human gastric adenocarcinoma cell line AGS. Bacterial growth medium supernatants induce a similar response in the host cell. The increase in inositol phosphates is not related to redistribution of cytoskeletal proteins such as actin or α-actinin nor tyrosine-phosphorylation of host cell proteins. The inositol phosphate increase is also observed in cells infected with low or non-adherent H. pylori mutants or mutants defective in the vacuolating toxin or urease holoenzyme. These results indicate that inositol phosphate release in H. pytori -infected cells is not dependent on bacterial adherence, and that a soluble bacterial factor, but not the vacuolating toxin or urease holoenzyme, mediates such an effect.  相似文献   

2.
3.
4.
5.
Helicobacter pylori colonizes the human gastric epithelium and induces an inflammatory response that is a trigger for gastric carcinogenesis. Matrix metalloproteinases (MMPs) have recently been shown to be up-regulated in gastric epithelial cells infected with H. pylori and might contribute to the pathogenesis of peptic ulcer. The aim of this study was to extend the knowledge about the effect of H. pylori infection on MMP-1 expression by gastric epithelial cells, the kinetics of induction, the pathogenetic properties of the bacterium, and the intracellular signaling pathways required for MMP-1 up-regulation. Expression of MMP-1 was induced more than 10-fold by co-culture of AGS+cells with H. pylori strains carrying the pathogenicity island (PAI). H. pylori strains with mutations in the PAI and a defective type IV secretion system had no effect on MMP-1. Double immunofluorescence revealed strong MMP-1 staining in epithelial cells of gastric biopsies at sites of bacterial attachment. In vitro, MMP-1 is up-regulated by interleukin-1beta and tumor necrosis factor-alpha, but these regulatory mechanisms are not operating in H. pylori infection as shown by inhibitory antibodies. Specific inhibitors of JNK kinase and ERK1/2 kinase were found to suppress the H. pylori-induced MMP-1 expression and activity. AGS cells treated with antisense MMP-1 showed a significantly reduced potential to degrade reconstituted basement membrane. Our results suggest that in gastric epithelial cells, H. pylori up-regulates MMP-1 in a type IV secretion system-dependent manner via JNK and ERK1/2. Induction of MMP-1 is further implicated in complex processes induced by H. pylori, resulting in tissue degradation and remodeling of the gastric mucosa.  相似文献   

6.
7.
We investigated the effect of H. pylori infection on cell proliferation of gastric mucosa using immunostaining for H. pylori or Ki67. H. pylori cells attached to surface mucous cells covering luminal surface and the upper part of gastric foveolae, and up-regulated the proliferative activity of gastric epithelial cells without adhering to the proliferating epithelial cells.  相似文献   

8.
Helicobacter pylori infection causes chronic inflammation, which can lead to gastric carcinoma. A double immunofluorescence labeling study demonstrated that the level of 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) apparent in gastric gland epithelium was significantly higher in gastritis patients with H. pylori infection than in those without infection. A significant accumulation of proliferating cell nuclear antigen, a prognostic factor for gastric cancer, was observed in gastric gland epithelial cells in patients with H. pylori infection as compared to those without infection, and its accumulation was closely correlated with the formation of 8-nitroguanine and 8-oxodG. These results suggest that nitrosative and oxidative DNA damage in gastric epithelial cells and their proliferation by H. pylori infection may lead to gastric carcinoma. 8-Nitroguanine could be not only a promising biomarker for inflammation but also a useful indicator of the risk of gastric cancer development in response to chronic H. pylori infection.  相似文献   

9.
Helicobacter pylori can efficiently capture iron either from free heme or heme-containing compounds in the iron-limited gastric mucosa. However, the heme iron utilization systems of H. pylori have not been fully described to date. To investigate the contribution of genes involved in heme-iron utilization, a gene homologous to frpB, encode by hp0876 in H. pylori ATCC 26695, was inactivated by homologous recombination. Δhp0876 showed no demonstrable growth defects in the presence of the various concentrations of free iron. Moreover, when hemoglobin or heme was supplied as the sole iron sources, Δhp0876 had growth curves similar to the wild-type strain. The growth competition experiments in vitro also showed that Δhp0876 retained the ability for iron acquisition. Furthermore, IL-8 production in human gastric epithelial cells co-cultured with Δhp0876 and wild-type strain was compared, and our results indicated that lack of HP0876 affected the IL-8 release. And Δhp0876 exhibited significantly increased adherence to gastric epithelial cells. Together, our data suggests that HP0876 is dispensable for H. pylori heme-iron uptake, but it may attenuate H. pylori adherence to gastric epithelial cells, which induced decreased production of H. pylori-induced IL-8 production in gastric epithelial cells.  相似文献   

10.
11.
BACKGROUND AND AIMS: In the human stomach expression of TNF-related apoptosis inducing ligand (TRAIL) and its receptors and the modulatory role of Helicobacter pylori are not well described. Therefore, we investigated the effect of H. pylori on the expression of TRAIL, FasL and their receptors (TRAIL-R1-R4, Fas) in gastric epithelial cells and examined their role in apoptosis. MATERIALS AND METHODS: mRNA and protein expression of TRAIL, FasL and their receptors were analyzed in human gastric epithelial cells using RT-PCR, Western blot, and immunohistochemistry. Gastric epithelial cells were incubated with FasL, TRAIL and/or H. pylori, and effects on expression, cell viability and epithelial apoptosis were monitored. Apoptosis was analyzed by histone ELISA, DAPI staining and immunohistochemistry. RESULTS: TRAIL, FasL and their receptor subtypes were expressed in human gastric mucosa, gastric epithelial cell primary cultures and gastric cancer cells. TRAIL, FasL and H. pylori caused a time- and concentration-dependent induction of DNA fragmentation in gastric cancer cells with synergistic effects. In addition, H. pylori caused a selective up-regulation of TRAIL, TRAIL-R1 and Fas mRNA and protein expression in gastric cancer cells. CONCLUSIONS: Next to FasL and Fas, TRAIL and all of its receptor subtypes are expressed in the human stomach and differentially modulated by H. pylori. TRAIL, FasL and H. pylori show complex interaction mediating apoptosis in human gastric epithelial cells. These findings might be important for the understanding of gastric epithelial cell kinetics in patients with H. pylori infection.  相似文献   

12.
Helicobacter pylori infection induces apoptosis and inducible nitric oxide synthase (iNOS) expression in gastric epithelial cells. In this study, we investigated the effects of NF-kappaB activation and iNOS expression on apoptosis in H. pylori-infected gastric epithelial cells. The suppression of NF-kappaB significantly increased caspase-3 activity and apoptosis in H. pylori-infected MKN-45 and Hs746T gastric epithelial cell lines as well as primary gastric epithelial cells. An NF-kappaB signaling pathway via NF-kappaB-inducing kinase and IkappaB kinase-beta activation was found to be involved in the inhibition of apoptosis in H. pylori-infected gastric epithelial cells. In gastric epithelial cells transfected with retrovirus containing IkappaBalpha superrepressor, iNOS mRNA and protein levels were reduced, indicating that H. pylori infection induced the expression of iNOS by activating NF-kappaB. Moreover, a NO donor, S-nitroso-N-acetylpenicillamine (100 microM), decreased caspase-3 activity and apoptosis in NF-kappaB-suppressed cells infected with H. pylori. These results suggest that NF-kappaB activation may play a role in protecting gastric epithelial cells from H. pylori-induced apoptosis by upregulating endogenous iNOS.  相似文献   

13.
Helicobacter pylori and apoptosis.   总被引:3,自引:0,他引:3  
In an attempt to understand the diverse effects of infection with Helicobacter pylori on epithelial mucosal mass and consequent clinical outcome, the relationship between H. pylori infection and gastric epithelial cellular turnover has been investigated. Our results indicate that H. pylori increases epithelial cell proliferation and apoptosis in vivo, but that infection with bacteria of the cagA genotype leads to relatively more proliferation than apoptosis. This review explores the causes of the induction of apoptosis in gastric epithelial cells by H. pylori and the consequences of alterations in apoptosis to the maintenance of gastric mucosal homeostasis.  相似文献   

14.
15.
魏晓晴  吕广艳  金海威  崔颖  赵莹 《生物磁学》2011,(21):4033-4035
目的:探讨幽门螺杆菌及其热休克蛋白60(H.pylori—HSP60)感染与胃上皮细胞表面DEC205受体的关系。方法:分别用H.pylori、H.pylori-HSP60及E.coliLPS刺激胃上皮细胞KATOIII,利用免疫荧光染色技术观察KATOIII细胞表面DEC205蛋白的表达变化,再利用RT—PCR技术,观察细胞中DEC205mRNA对上述抗原刺激后的变化。结果:H.pylori、H.pylori—HSP60及E.coliLPS的刺激明显引起细胞表面DEC205蛋白的表达以及细胞内DEC205mRNA的产生。结论:H.pylori感染与胃上皮细胞表面的胞吞受体DEC205有着密切的关系。  相似文献   

16.
17.
18.
Helicobacter pylori is a major etiological agent in gastroduodenal disorders. The adhesion of H. pylori to gastric epithelial cells is the initial step of H. pylori infection. Inhibition of H. pylori adhesion is thus a therapeutic target in the prevention of H. pylori infection. We have reported that rebamipide and ecabet sodium, mucoprotective antiulcer agents, independently inhibit H. pylori adhesion. However, the antiadhesion activity of each antiulcer agent was incomplete. Experiments were performed to evaluate the combined effect of rebamipide and ecabet sodium on H. pylori adhesion to gastric epithelial cells. MKN-28 and MKN-45 cells, derived from human gastric carcinomas, were used as target cells. Twelve clinical isolates of H. pylori were used in this study. We evaluated the effects of rebamipide and ecabet sodium, individually and in combination, on H. pylori adhesion to target cells quantitatively using our previously established enzyme-linked immunosorbent assay. Rebamipide and ecabet sodium each partially inhibited H. pylori adhesion. In contrast, adhesion was almost completely inhibited by pretreating target cells and H. pylori with the combination of rebamipide and ecabet sodium. Our studies suggest that the synergistic antiadhesion activity of rebamipide and ecabet sodium is greater than that of each antiulcer agent alone.  相似文献   

19.
20.
BACKGROUND: Helicobacer pylori infection is a major gastric cancer risk factor. Deficient DNA mismatch repair (MMR) caused by H. pylori may underlie microsatellite instability (MSI) in the gastric epithelium and may represent a major mechanism of mutation accumulation in the gastric mucosa during the early stages of H. pylori-associated gastric carcinogenesis. In this study, we examined the expression of DNA MMR protein (hMLH1 and hMSH2) in patients with chronic H. pylori infection before and after eradication of the infection. MATERIALS AND METHODS: Gastric tissue samples were collected from 60 patients with H. pylori gastritis and peptic ulcer disease before and after eradication of the infection. The DNA MMR protein expression (hMLH1 and hMSH2) was determined by immunohistochemical staining in 60 patients before and after H. pylori eradication. The percentage of epithelial cell nuclei and intensity of staining were then compared in gastric biopsies before and after eradication. RESULTS: The percentage of hMLH1 (76.60 +/- 20.27, 84.82 +/- 12.73, p=.01) and hMSH2 (82.36 +/- 12.86, 88.11 +/- 9.27, p<.05) positive epithelial cells significantly increased in 53 patients who became H. pylori-negative after eradication therapy. However, the intensity of hMLH1 and hMSH2 staining was not significantly different. In those 7 patients, who did not respond to the eradication therapy and were still H. pylori-positive, the percent positivity and intensity of hMLH1 and hMSH2 staining did not change. CONCLUSIONS: The expression of DNA MMR proteins increased in the gastric mucosa after H. pylori eradication, indicating that H. pylori gastritis may be associated with a reduced DNA MMR system during infection. The effect of H. pylori infection on MMR protein expression appears to be at least partially reversible after H. pylori eradication. These data suggest that H. pylori gastritis might lead to a deficiency of DNA MMR in gastric epithelium that may increase the risk of mutation accumulation in the gastric mucosa cells during chronic H. pylori infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号