首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Free radical research》2013,47(1):16-28
Abstract

The mitochondrial outer membrane surrounds the entire organelle. It is composed of a phospholipid bilayer with proteins either embedded into or anchored to the bilayer and mediates the interactions between mitochondria and the rest of the cell. Most of the proteins present in the mitochondrial outer membrane are highly hydrophobic with one or more transmembrane segments. These proteins in conjunction with proteins localized in the inner membrane catalyse energy exchange reactions, the flux of small molecules such as ions, the activation and uptake of long chain fatty acids, import of proteins into the mitochondria, and elimination of biogenic amines among others. In addition, some outer membrane proteins serve as docking sites for non-resident enzymes such as hexokinase and other kinases of signal transduction. All these processes require an intact outer membrane and are highly regulated. One level of regulation with physiological/pathophysiological relevance involves post-translational modification of outer membrane proteins, either by phosphorylation, acetylation or other type of reversible covalent modification. Post-translational modification such as nitration and carbonylation becomes significant under disease states that are associated with increased oxidative stress, i.e. inflammation and ischemia. This review examines the different post-translational modifications of mitochondrial outer membrane proteins and discusses the physiological relevance of these modifications.  相似文献   

2.
The mitochondrial outer membrane surrounds the entire organelle. It is composed of a phospholipid bilayer with proteins either embedded into or anchored to the bilayer and mediates the interactions between mitochondria and the rest of the cell. Most of the proteins present in the mitochondrial outer membrane are highly hydrophobic with one or more transmembrane segments. These proteins in conjunction with proteins localized in the inner membrane catalyse energy exchange reactions, the flux of small molecules such as ions, the activation and uptake of long chain fatty acids, import of proteins into the mitochondria, and elimination of biogenic amines among others. In addition, some outer membrane proteins serve as docking sites for non-resident enzymes such as hexokinase and other kinases of signal transduction. All these processes require an intact outer membrane and are highly regulated. One level of regulation with physiological/pathophysiological relevance involves post-translational modification of outer membrane proteins, either by phosphorylation, acetylation or other type of reversible covalent modification. Post-translational modification such as nitration and carbonylation becomes significant under disease states that are associated with increased oxidative stress, i.e. inflammation and ischemia. This review examines the different post-translational modifications of mitochondrial outer membrane proteins and discusses the physiological relevance of these modifications.  相似文献   

3.
4.
Post-translational modifications of human glucose-6-phosphate dehydrogenase   总被引:3,自引:0,他引:3  
A Kahn  P Boivin  M Vibert  D Cottreau  J C Dreyfus 《Biochimie》1974,56(10):1395-1407
  相似文献   

5.
Wang Y  Lam KS  Yau MH  Xu A 《The Biochemical journal》2008,409(3):623-633
Adiponectin is an insulin-sensitizing adipokine with anti-diabetic, anti-atherogenic, anti-inflammatory and cardioprotective properties. This adipokine is secreted from adipocytes into the circulation as three oligomeric isoforms, including trimeric, hexameric and the HMW (high-molecular-mass) oligomeric complex consisting of at least 18 protomers. Each oligomeric isoform of adiponectin exerts distinct biological properties in its various target tissues. The HMW oligomer is the major active form mediating the insulin-sensitizing effects of adiponectin, whereas the central actions of this adipokine are attributed primarily to the hexameric and trimeric oligomers. In patients with Type 2 diabetes and coronary heart disease, circulating levels of HMW adiponectin are selectively decreased due to an impaired secretion of this oligomer from adipocytes. The biosynthesis of the adiponectin oligomers is a complex process involving extensive post-translational modifications. Hydroxylation and glycosylation of several conserved lysine residues in the collagenous domain of adiponectin are necessary for the intracellular assembly and stabilization of its high-order oligomeric structures. Secretion of the adiponectin oligomers is tightly controlled by a pair of molecular chaperones in the ER (endoplasmic reticulum), including ERp44 (ER protein of 44 kDa) and Ero1-Lalpha (ER oxidoreductase 1-Lalpha). ERp44 inhibits the secretion of adiponectin oligomers through a thiol-mediated retention. In contrast, Ero1-Lalpha releases HMW adiponectin trapped by ERp44. The PPARgamma (peroxisome-proliferator-activated receptor gamma) agonists thiazolidinediones selectively enhance the secretion of HMW adiponectin through up-regulation of Ero1-Lalpha. In the present review, we discuss the recent advances in our understanding of the structural and biological properties of the adiponectin oligomeric isoforms and highlight the role of post-translational modifications in regulating the biosynthesis of HMW adiponectin.  相似文献   

6.
7.
An enzyme fraction which oxidizes lactaldehyde to lactic acid has been purified from goat liver. This enzyme was found to be identical with the cytosolic aldehyde dehydrogenase. Lactaldehyde was found to be primarily oxidized by this enzyme. Almost 90% of the total lactaldehyde-oxidizing activity is located in the cytosol. Methylglyoxal and glyceraldehyde 3-phosphate were found to be strong competitive inhibitors of this enzyme. Aldehyde dehydrogenase from goat liver mitochondria has also been partially purified and found to be strongly inhibited by these metabolites. The inhibitory effects of these metabolites on both these enzymes are highly pH dependent. The inhibitory effects of both the metabolites have been found to be stronger for the cytosolic enzyme at pH values higher than the physiological pH. For the mitochondrial enzyme, the inhibition with methylglyoxal was more pronounced at higher pH values, whereas stronger inhibition was observed with glyceraldehyde 3-phosphate at physiological pH.  相似文献   

8.
9.
Alzheimer's disease (AD) belongs to a group of neurodegenerative diseases collectively designated as "tauopathies", because they are characterized by the aggregation of abnormally phosphorylated tau protein. The mechanisms responsible for tau aggregation and its contribution to neurodegeneration are still unknown. Thereby, understanding the modes of regulation of tau is of high interest in the determination of the possible causes at the origin of the formation of tau aggregates and to elaborate protection strategies to cope with these pathological lesions. The regulation of tau takes place predominantly through post-translational modifications. Extensive reports have been published about tau phosphorylation; however, the other tau post-translational modifications have received much less attention. Here, we review the different types of post-translational modifications of tau including phosphorylation, glycosylation, glycation, prolyl-isomerization, cleavage or truncation, nitration, polyamination, ubiquitination, sumoylation, oxidation and aggregation, with a particular interest towards their relevance in AD.  相似文献   

10.
The molecular biology and enzymology of aldehyde dehydrogenase (ALDH) have been extensively investigated. However, most of the studies have been confined to the mammalian forms, while the sub-mammalian vertebrate ALDHs are relatively unexplored. In the present investigation, an ALDH was purified from the hepatopancreas of grass carp (Ctenopharygodon idellus) by affinity chromatographies on α-cyanocinnamate-Sepharose and Affi-gel Blue agarose. The 800-fold purified enzyme had a specific activity of 4.46 U/mg toward the oxidation of acetaldehyde at pH 9.5. It had a subunit molecular weight of 55 000. Isoelectric focusing showed a single band with a pI of 5.3. N-terminal amino acid sequencing of 30 residues revealed a positional identity of ∼70% with mammalian mitochondrial ALDH2. The kinetic properties of grass carp ALDH resembled those of mammalian ALDH2. The optimal pH for the oxidation of acetaldehyde was 9.5. The Km values for acetaldehyde were 0.36 and 0.31 μM at pH 7.5 and 9.5, respectively. Grass carp ALDH also possessed esterase activity which could be activated in the presence of NAD+.  相似文献   

11.
The molecular biology and enzymology of aldehyde dehydrogenase (ALDH) have been extensively investigated. However, most of the studies have been confined to the mammalian forms, while the sub-mammalian vertebrate ALDHs are relatively unexplored. In the present investigation, an ALDH was purified from the hepatopancreas of grass carp (Ctenopharygodon idellus) by affinity chromatographies on alpha-cyanocinnamate-Sepharose and Affi-gel Blue agarose. The 800-fold purified enzyme had a specific activity of 4.46 U/mg toward the oxidation of acetaldehyde at pH 9.5. It had a subunit molecular weight of 55000. Isoelectric focusing showed a single band with a pI of 5.3. N-terminal amino acid sequencing of 30 residues revealed a positional identity of approximately 70% with mammalian mitochondrial ALDH2. The kinetic properties of grass carp ALDH resembled those of mammalian ALDH2. The optimal pH for the oxidation of acetaldehyde was 9.5. The K(m) values for acetaldehyde were 0.36 and 0.31 microM at pH 7.5 and 9.5, respectively. Grass carp ALDH also possessed esterase activity which could be activated in the presence of NAD(+).  相似文献   

12.
Induction of aldehyde dehydrogenase in a mitochondrial fraction   总被引:1,自引:0,他引:1  
  相似文献   

13.
Recent studies have illustrated the functional significance of DNA recognition in the activation of innate immune responses among a variety of diseases. The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway has been found to be modulated by post-translational modifications and can regulate the immune response via type I IFNs. Accumulating evidence indicates a pivotal role of cGAS-STING signaling, being protective or pathogenic, in the development of diseases. Thus, a comprehensive understanding of the post-translational modifications of cGAS-STING pathway and their role in disease development will provide insights in predicting individual disease outcomes and developing appropriate therapies. In this review, we will discuss the regulation of the cGAS-STING pathway and its implications in disease pathologies, as well as pharmacologic strategies to target the cGAS-STING pathway for therapeutic intervention.  相似文献   

14.
15.
Post-translational modifications of lantibiotics   总被引:2,自引:0,他引:2  
Several newly reported post-translational modification reactions are involved in lantibiotic biosynthesis. A short overview of the present knowledge on the post-translational modifications and on the enzymes involved in lantibiotic biosynthesis is given. The oxidative decarboxylation of the epidermin precursor peptide EpiA is described in detail. The FMN-containing oxidoreductase EpiD is involved in the formation of the C-terminal S-[(Z)-2-aminovinyl]-D-cysteine residue of epidermin: under reducing conditions the side chain of the C-terminal cysteine residue of EpiA is converted to an enethiol. EpiD has no absolute substrate specificity and can be used for modification of peptides having the C-terminal consensus motif [V/I/L/(M)/F/Y/W]-[A/S/V/T/C/(I/L)]-C.Abbreviations Dha 2,3-didehydroalanine - Dhb (Z)-2,3-didehydrobutyrine - ES-MS Electrospray Mass Spectrometry - FAD Flavin Adenine Dinucleotide - FMN Flavin Mononucleotide - MBP Maltose-Binding Protein - TFA TrifluoroAcetic Acid - TLC Thin-Layer Chromatography  相似文献   

16.
An NAD-linked aldehyde dehydrogenase which in addition to aliphatic and aromatic aldehydes, metabolizes aminoaldehydes and betaine aldehyde, has been purified to homogeneity from male Sprague–Dawley rat liver mitochondria. The properties of the rat mitochondrial enzyme are similar to those of a rat liver cytoplasmic betaine aldehyde dehydrognase and the human cytoplasmic E3 isozyme. The primary structure. of four tryptic peptides were also similar; only one difference in primary structure was observed. The close similarity of properties of the cytoplasmic with the mitochondrial form suggest that the cytoplasmic and mitochondrial betaine aldehyde dehydrogenase may be coded for by the same nuclear gene. Investigation of the mitochondrial form by isoelectric focusing resulted in visualization of multiple forms, different from those seen in the cytoplasm suggesting that the enzyme may be processed in the mitochondria.  相似文献   

17.
18.
An NAD-linked aldehyde dehydrogenase which in addition to aliphatic and aromatic aldehydes, metabolizes aminoaldehydes and betaine aldehyde, has been purified to homogeneity from male Sprague-Dawley rat liver mitochondria. The properties of the rat mitochondrial enzyme are similar to those of a rat liver cytoplasmic betaine aldehyde dehydrognase and the human cytoplasmic E3 isozyme. The primary structure. of four tryptic peptides were also similar; only one difference in primary structure was observed. The close similarity of properties of the cytoplasmic with the mitochondrial form suggest that the cytoplasmic and mitochondrial betaine aldehyde dehydrogenase may be coded for by the same nuclear gene. Investigation of the mitochondrial form by isoelectric focusing resulted in visualization of multiple forms, different from those seen in the cytoplasm suggesting that the enzyme may be processed in the mitochondria.  相似文献   

19.
Moon KH  Kim BJ  Song BJ 《FEBS letters》2005,579(27):6115-6120
Mitochondrial aldehyde dehydrogenase (ALDH2) is responsible for the metabolism of acetaldehyde and other toxic lipid aldehydes. Despite many reports about the inhibition of ALDH2 by toxic chemicals, it is unknown whether nitric oxide (NO) can alter the ALDH2 activity in intact cells or in vivo animals. The aim of this study was to investigate the effects of NO on ALDH2 activity in H4IIE-C3 rat hepatoma cells. NO donors such as S-nitrosoglutathione (GSNO), S-nitroso-N-acetylpenicillamine, and 3-morpholinosydnonimine significantly increased the nitrite concentration while they inhibited the ALDH2 activity. Addition of GSH-ethylester (GSH-EE) completely blocked the GSNO-mediated ALDH2 inhibition and increased nitrite concentration. To directly demonstrate the NO-mediated S-nitrosylation and inactivation, ALDH2 was immunopurified from control or GSNO-treated cells and subjected to immunoblot analysis. The anti-nitrosocysteine antibody recognized the immunopurified ALDH2 only from the GSNO-treated samples. All these results indicate that S-nitrosylation of ALDH2 in intact cells leads to reversible inhibition of ALDH2 activity.  相似文献   

20.
Genomic structure of the human mitochondrial aldehyde dehydrogenase gene   总被引:8,自引:0,他引:8  
We have isolated and characterized four overlapping clones from two cosmid human genomic libraries, which span about 90 kilobase pairs (kbp) and contain the entire human mitochondrial aldehyde dehydrogenase (ALDH2) gene. Restriction maps of the genomic clones were elucidated utilizing cDNA probes and specific oligonucleotide probes. The organization of exons and introns was established by DNA sequencing of each exon and splicing junctions. The ALDH2 gene is about 44 kbp in length and contains at least 13 exons which encode 517 amino acid residues. Except for the signal NH2-terminal peptide, which is absent in the mature enzyme, the amino acid sequence deduced from the exons coincided with the reported primary structure of human liver ALDH2 (J. Hempel, R. Kaiser, and H. J?rnvall, 1985, Eur. J. Biochem. 153: 13-28). Several introns contain Alu repetitive sequences. A TATA-like sequence (TTATAAAA) and a CAAT-like sequence (GTCATCAT) are located 473 and 515 bp, respectively, upstream from the translation initiation codon. Primer extension and S1 nuclease mapping were performed to characterize the 5'-region of the gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号