首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Helicobacter pylori exists in two morphologic forms: spiral shaped and coccoid. The nonculturable coccoid forms were believed to be the morphologic manifestations of cell death for a long time. However, recent studies indicate the viability of such forms. This form of H. pylori is now suspected to play a role in the transmission of the bacteria and is partly responsible for relapse of infection after antimicrobial treatment. Urease activity of H. pylori is an important maintenance factor. Determination of urease activity and possible mutations in the DNA sequences of coccoid bacteria will hence contribute to the understanding of pathogenesis of infections, which these forms might be responsible for. In this study, our aim was to analyze the urease activity and investigate the urease gene sequences of coccoid H. pylori forms induced by different factors with respect to the spiral form. For this purpose, the urease activities of H. pylori NCTC 11637 standard strain and two clinical isolates were examined before and after transformation of the cells to coccoid forms by different methods such as exposure to amoxicillin, aerobiosis, cold starvation, and aging. The effects of these conditions on the urease gene were examined by the amplification of 411-bp ureA gene and 115-bp ureB gene regions by PCR technique and sequencing of the ureA gene. The urease activities of coccoid cells were found to be lower than those of the spiral form. ureA and ureB gene regions were amplified in all coccoid cells by PCR. Inducing the change to coccoid form by different methods was found to have no effect on the nucleotide sequence of the ureA gene. These results show that the urease gene region of coccoid H. pylori is highly protected under various mild environmental conditions.  相似文献   

2.
An experimental rodent model was used to demonstrate the viability of the coccoid form of Helicobacter pylori. Concentrated suspensions were prepared for the two different morphologies: at 2 days incubation for the bacillary forms and at 20 days incubation for the “dormant” forms. The strains used for incubation were two fresh isolates from humans with duodenal ulceration, and two collection strains. Five hundred microliters of culture (OD550 = 5 Mc Farland) of Helicobacter pylori with bacillary (2-5×109 CFU/ml) and coccoid (0 CFU/ml) morphology were inoculated intragastrically in BALB/c mice. The gastric mucosa of the mice was colonized by Helicobacter pylori with the administration of fresh bacillary and coccoid cultures and not with the established cultures. Helicobacter pylori was isolated at 1 week after inoculation with the administration of fresh bacillary cultures, while fresh coccoid Helicobacter pylori was recovered in mice stomachs after 2 weeks of inoculation. After colonization, histopathologic changes occurred after 1 month from inoculation; all colonized mice showed a systemic antibody response to Helicobacter pylori. These results support the thesis of the viability of coccoid Helicobacter pylori non-culturable in vitro and confirm that concentrated bacterial suspensions are able to colonize and to produce gastric alterations in this suitable animal model.  相似文献   

3.
The morphologic changes from bacillary to coccoid forms of Helicobacter pylori were studied. These form changes were analyzed by bacterial growth in Brucella broth plus 2% fetal calf serum. The coccoid forms were observed at five days of incubation and a rapid decrease of CFU/ml was recorded. At two weeks of microaerophilic incubation, all coccoid forms observed were not culturable in vitro. The coccoid morphology was observed earlier when the culture of H. pylori was incubated in aerobic conditions and with subinhibitory concentrations of omeprazole and roxithromycin. To evaluate the possibility of resistance of coccal forms, before plating, the cultures were heated to 80 C for 10 min and sonicated. In the absence of these treatments the cultures did not show growth in vitro. The proteic patterns of the same strains of two different morphologies were studied revealing significant differences.  相似文献   

4.
Aims: To demonstrate the application of a new quantitative polymerase chain reaction (qPCR) technique for the determination of Helicobacter pylori concentrations in water, and to use this method to investigate the occurrence of the bacteria in sewage. The other aim was to study the survival capacity and detectability of the bacteria in artificially contaminated groundwater at different temperatures of 4 and 15°C. Methods and Results: The detection of H. pylori in water was aided by PCR using specific primers designed for the amplification of a fragment within the major vacuolating cytotoxin gene. Conventional culture was compared with conventional PCR and the new real-time (RT) qPCR approach for the quantification of the bacterium. Helicobacter pylori remained culturable for 120 h at 4°C as opposed to only 24 h at 15°C. RT qPCR demonstrated a 100-fold greater sensitivity for the detection of H. pylori DNA in comparison with conventional PCR. Scanning electron microscopic (SEM) observation showed that the normal spiral form changed to a coccoid form after 24 and 72 h at 15 and 4°C, respectively. Helicobacter pylori was found at 2–28 cells ml−1 in sewage, of the 23 sewage samples – 84% were positive for H. pylori species-specific vacuolating cyctotoxin gene (vacA) by RT qPCR, but were negative by conventional PCR. Conclusions: The RT qPCR assay provided a specific, sensitive and rapid method for the quantitative detection of H. pylori in sewage. This molecular method would be valuable in studying the prevalence of H. pylori as required by the United States Environmental Protection Agency Contaminant Candidate List, particularly in nondisinfected ground waters, in sewage as a source of contamination, and for addressing the possible presence of viable but nonculturable of H. pylori. Significance and Impact of the Study: The quantitative detection of H. pylori by rapid and less-expensive methods than the TaqMan Assay using SYBR green could be an important tool to monitor infection in community by measuring the concentrations in sewage and to meet the new regulatory and risk-based frameworks for water supplies.  相似文献   

5.
It is now established that the gastric pathogen Helicobacter pylori has the ability to form biofilms in vitro as well as on the human gastric mucosa. The aim of this study is to evaluate the antimicrobial effects of Clarithromycin on H. pylori biofilm and to enhance the effects of this antibiotic by combining it with Alginate Lyase, an enzyme degrading the polysaccharides present in the extracellular polymeric matrix forming the biofilm. We evaluated the Clarithromycin minimum inhibition concentration (MIC) on in vitro preformed biofilm of a H. pylori. Then the synergic effect of Clarithromycin and Alginate Lyase treatment has been quantified by using the Fractional Inhibitory Concentration index, measured by checkerboard microdilution assay. To clarify the mechanisms behind the effectiveness of this antibiofilm therapeutic combination, we used Atomic Force Microscopy to analyze modifications of bacterial morphology, percentage of bacillary or coccoid shaped bacteria cells and to quantify biofilm properties. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1584–1591, 2016  相似文献   

6.
Helicobacter pylori (H. Pylori) is an actively dividing spiral bacterium that changes to coccoid morphology under stressful environments. The infectivity of the coccoids is still controversial. The aim of this study was to determine the viability and expression of two important virulence genes (babA and cagE), in antibiotic-induced coccoid forms. Three strains of H. pylori, the standard 26695 and two clinical isolates (p1, p2) were converted to coccoid form by amoxicillin. Coccoids were identified according to Gram-staining and microscopic morphology. The viability of the cells was analyzed by flow cytometry. The expression of cagE and babA in coccoid forms were evaluated and compared to the spirals by quantitative PCR assay. The coccoid forms were developed after 72 h exposure of H. pylori to ½ MIC of amoxicillin, and the conversion form was completed (100 %) at 144 h in all of three isolates. Flow cytometry analyses showed that the majority of the induced coccoids (90–99.9 %) were viable. Expression of cagE and babA was seen in coccoids; however, in lower rate (cagE, ~3-fold and babA, ~10-fold) than these in spiral forms. Coccoid forms of two clinical isolates significantly expressed higher rate of cagE and babA than standard 26695 strain (P = 0.01). These results suggest that the induced coccoid form of H. pylori is not a passive entity but can actively infect the human by expression of the virulence genes for long time in stomach and probably play a role in chronic and severe disease.  相似文献   

7.
Background: Helicobacter pylori is microaerobic and turns into coccoid under aerobic conditions. In this study, two mucoid strains, A and D, were isolated from gastric biopsies which grew well on blood agar after 24‐hour incubation under aerobic as well as microaerobic conditions. The aim of this study was to identify these strains and compare their growth under aerobic and microaerobic conditions with that of control H. pylori. Materials and Methods: The two isolates A and D were identified as H. pylori according to microscopic morphology, urease, catalase and oxidase tests. Their growth under humidified aerobic and microaerobic conditions was compared with that of control H. pylori which grew only under microaerobic conditions. They were further identified by amplification of 16S rRNA, vacA alleles, cagA and ureAB genes by PCR. Their susceptibility to current antimicrobials was also examined. Results: The strains A and D produced mucoid colonies under aerobic and microaerobic conditions after 24‐hour, exhibiting the typical spiral morphology of H. pylori. The results of urease, catalase and oxidase tests were positive. Sequencing of amplified products showed 99–100% homology with those of the reference H. pylori strains in GenBank. Both strains exhibited resistance to the high concentrations of antimicrobials. Conclusions: This study reports the isolation of two mucoid strains of H. pylori with confluent growth under aerobic and microaerobic conditions. It appears that production of exopolysaccharide (EXP) could serve as a physical barrier to reduce oxygen diffusion into the bacterial cell and uptake of antibiotics. EXP protected the mucoid H. pylori isolates against stressful conditions, the result of which could be persistence of bacterial infection in the stomach.  相似文献   

8.
Helicobacter pylori (H. pylori), a gram‐negative microaerophilic bacterial pathogen that colonizes the stomachs of more than half of all humans, is linked to chronic gastritis, peptic ulcers and gastric cancer. Spiral‐shaped H. pylori undergo morphologic conversion to a viable but not culturable coccoid form when they transit from the microaerobic stomach into the anaerobic intestinal tract. However, little is known about the morphological and pathogenic characteristics of H. pylori under prolonged anaerobic conditions. In this study, scanning electron microscopy was used to document anaerobiosis‐induced morphological changes of H. pylori, from helical to coccoid to a newly defined fragmented form. Western blot analysis indicated that all three forms express certain pathogenic proteins, including the bacterial cytotoxin‐associated gene A (CagA), components of the cag‐Type IV secretion system (TFSS), the blood group antigen‐binding adhesin BabA, and UreA (an apoenzyme of urease), almost equally. Similar urease activities were also detected in all three forms of H. pylori. However, in contrast to the helical form, bacterial motility and TFSS activity were found to have been abrogated in the anaerobiosis‐induced coccoid and fragmented forms of H. pylori. Notably, it was demonstrated that some of the anaerobiosis‐induced fragmented state cells could be converted to proliferation‐competent helical bacteria in vitro. These results indicate that prolonged exposure to the anaerobic intestine may not eliminate the potential for H. pylori to revert to the helical pathogenic state.
  相似文献   

9.
10.
Shin CM  Kim N  Jung Y  Park JH  Kang GH  Park WY  Kim JS  Jung HC  Song IS 《Helicobacter》2011,16(3):179-188
Background and Aims: To determine genome‐wide DNA methylation profiles induced by Helicobacter pylori (H. pylori) infection and to identify methylation markers in H. pylori‐induced gastric carcinogenesis. Methods: Gastric mucosae obtained from controls (n = 20) and patients with gastric cancer (n = 28) were included. A wide panel of CpG sites in cancer‐related genes (1505 CpG sites in 807 genes) was analyzed using Illumina bead array technology. Validation of the results of Illumina bead array technique was performed using methylation‐specific PCR method for four genes (MOS, DCC, CRK, and PTPN6). Results: The Illumina bead array showed that a total of 359 CpG sites (269 genes) were identified as differentially methylated by H. pylori infection (p < .0001). The correlation between methylation‐specific PCR and bead array analysis was significant (p < .0001, Spearman coefficient = 0.5054). Methylation profiles in noncancerous gastric mucosae of the patients with gastric cancer showed quite distinct patterns according to the presence or absence of the current H. pylori infection; however, 10 CpG sites were identified to be hypermethylated and three hypomethylated in association with the presence of gastric cancer regardless of H. pylori infection (p < .01). Conclusions: Genome‐wide methylation profiles showed a number of genes differentially methylated by H. pylori infection. Methylation profiles in noncancerous gastric mucosae from the patients with gastric cancer can be affected by H. pylori‐induced gastritis. Differentially methylated CpG sites in this study needs to be validated in a larger population using quantitative methylation‐specific PCR method.  相似文献   

11.
Xu J  Czinn SJ  Blanchard TG 《Helicobacter》2010,15(5):477-480
Background: Helicobacter pylori requires frequent passage at 37 °C with reduced oxygen tension to maintain viability, and recovery from frozen stocks can be unpredictable and slow. Agar stab cultures were assessed as a possible means of maintaining viability without the need to passage every 4–7 days. Materials and Methods: Agar stabs prepared from either Brucella or Brain Heart Infusion media were inoculated deeply with H. pylori strains or H. felis and grown under varying conditions for up to 13 weeks. Subcultures were prepared from these stabs at various intervals to test for viability. Results: Established cultures in agar stabs failed to survive at room temperature but did survive at 37 °C with 10% CO2 for up to 56 days. H. felis remained viable for up to 28 days. No difference was observed between the two media formulations. Conclusion: H. pylori grown in agar stabs remains viable for prolonged periods of time without the need to subculture and may represent an improved method for storing H. pylori for infrequent use.  相似文献   

12.
Helicobacter pylori (H. pylori) can convert to coccoid form in unfavorable conditions or as a result of antibiotic treatment. In order to adapt to harsh environments, H. pylori requires a stringent response which, encoded by the spoT gene, has a bifunctional enzyme possessing both (p)ppGpp synthetic and degrading activity. Our goal in this study was to compare spoT gene expression in spiral and induced coccoid forms of H. pylori with use of amoxicillin. First, clinical isolate coccoid forms were induced with amoxicillin; then, the viability test was analyzed by flow cytometer. After RNA extraction, cDNA synthesis and designing a specific primer for spoT gene, evaluation of the desired gene expression in both forms were studied. Bacterial isolates exposed to amoxicillin at MIC and 1/2 MIC induced morphological conversion better and faster than other MIC concentration. The expression of spoT gene was significantly downregulated in spiral forms of H. pylori, while the gene expression was upregulated and + 30.3-fold changes was seen in coccoid forms of bacterium. To summarize, spoT gene is one of the key factors for antibiotic resistance and its enhanced expression in coccoid form can be a valuable diagnostic marker for recognition of H. pylori during morphological conversion.  相似文献   

13.
Aims: To investigate the effects of simulated gastric conditions upon the anti-Helicobacter pylori effects of garlic oil (GO). Methods and Results: Time course viability experiments assessed the anti-H. pylori activity of GO (16 and 32 μg ml−1) in simulated gastric environments. Rapid anti-H. pylori action of GO was observed in artificial gastric juice. Mucus (1–5%) was strongly protective of H. pylori both alone and in the presence of GO, but its protective effect was antagonized by GO. Peptone (5–15 g l−1) caused a dose-dependent reduction in the anti-H. pylori activity of GO. Rapeseed oil (5·7–17 g l−1) greatly diminished the anti-H. pylori activity of GO. Dextrin (44 and 133 g l−1) exhibited direct anti-H. pylori effects and added to those of GO. Simulated meal mixtures decreased but did not eliminate the anti-H. pylori activity of 32 μg ml−1 GO. Conclusions: The anti-H. pylori activity of GO was noticeably affected by food materials and mucin. However, substantial activity remained under simulated gastric conditions. Further investigation of the therapeutic potential of GO against H. pylori is therefore warranted. Significance and Impact of the Study: Garlic oil may be useful as an alternative treatment against H. pylori, a major cause of gastrointestinal infections in humans.  相似文献   

14.
Although both bacillary and coccoid forms of Helicobacter pylori reside in human stomach, the pathophysiological significance of the two forms remains obscure. The present work describes the effect of oxygen tension on the transformation and reactive oxygen species (ROS) metabolism of this pathogen. Most H. pylori cultured under an optimum O2 concentration (7%) were the bacillary form, whereas about 80% of cells cultured under aerobic or anaerobic conditions were the coccoid form. The colony-forming unit of H. pylori decreased significantly under both aerobic and anaerobic culture conditions. The bacillary form of H. pylori generated predominantly superoxide radical, whereas the coccoid form generated preferentially hydroxyl radical. Specific activities of cellular respiration, urease, and superoxide dismatase decreased markedly after transformation of the bacillary form to the coccoid form, with concomitant generation of protein carbonyls and 8-hydroxyguanine. The frequency of mutation of cells increased significantly during culture under nonoptimum O2 conditions. These results indicate that ROS generated by H. pylori catalyze the oxidative modification of cellular DNA, thereby enhancing the transformation from the bacillary to the coccoid form. The enhanced generation of mutagenic hydroxyl radicals in the coccoid form might accelerate mutation and increase the genetic diversity of H. pylori.  相似文献   

15.
Background and Aims: Helicobacter pylori is a highly diverse pathogen, which encounters epithelial cells as the initial defense barrier during its lifelong infection. The structure of epithelial cells can be disrupted through cleavage of microfilaments. Cytokeratin 18 (CK18) is an intermediate filament, the cleavage of which is considered an early event during apoptosis following activation of effector caspases. Methods: Helicobacter pylori strains were isolated from 76 dyspeptic patients. cagA 3’ variable region and CagA protein status were analyzed by PCR and western blotting, respectively. Eight hours post‐co‐culture of AGS cells with different H. pylori strains, flow cytometric analysis was performed using M30 monoclonal antibody specific to CK18 cleavage‐induced neo‐epitope. Results: Higher rates of CK18 cleavage were detected during co‐culture of AGS cells with H. pylori strains bearing greater numbers of cagA EPIYA‐C and multimerization (CM) motifs. On the other hand, H. pylori strains with greater numbers of EPIYA‐B relative to EPIYA‐C demonstrated a decrease in CK18 cleavage rate. Thus, H. pylori‐mediated cleavage of CK18 appeared proportional to the number of CagA EPIYA‐C and CM motifs, which seemed to be downplayed in the presence of EPIYA‐B motifs. Conclusions: Our observation associating the heterogeneity of cagA variants with the potential of H. pylori strains in the induction of CK18 cleavage as an early indication of apoptosis in gastric epithelial cells supports the fact that apoptosis may be a type‐specific trait. However, additional cagA‐targeted experiments are required to clearly identify the role of EPIYA and CM motifs in apoptosis and/or the responsible effector molecules.  相似文献   

16.
Aims: The aim of this study was to develop and optimize a novel method that combines ethidium bromide monoazide (EMA) staining with real‐time PCR for the detection of viable Escherichia  coli O157:H7 in ground beef. EMA can penetrate dead cells and bind to intracellular DNA, preventing its amplification via PCR. Methods and Results: Samples were stained with EMA for 5 min, iced for 1 min and exposed to bright visible light for 10 min prior to DNA extraction, to allow EMA binding of the DNA from dead cells. DNA was then extracted and amplified by TaqMan® real‐time PCR to detect only viable E. coli O157:H7 cells. The primers and TaqMan® probe used in this study target the uidA gene in E. coli O157:H7. An internal amplification control (IAC), consisting of 0·25 pg of plasmid pUC19, was added in each reaction to prevent the occurrence of false‐negative results. Results showed a reproducible application of this technique to detect viable cells in both broth culture and ground beef. EMA, at a final concentration of 10 μg ml?1, was demonstrated to effectively bind DNA from 108 CFU ml?1 dead cells, and the optimized method could detect as low as 104 CFU g?1 of viable E. coli O157:H7 cells in ground beef without interference from 108 CFU g?1 of dead cells. Conclusions: EMA real‐time PCR with IAC can effectively separate dead cells from viable E. coli O157:H7 and prevent amplification of DNA in the dead cells. Significance and Impact of the Study: The EMA real‐time PCR has the potential to be a highly sensitive quantitative detection technique to assess the contamination of viable E. coli O157:H7 in ground beef and other meat or food products.  相似文献   

17.
Hu S  Xie Y  Zhou N  Jin L  Tan Y  Liu D  Gong Y  Liu L  Liu J  Liu W  Chen Y  Zhang Y  Lv N 《Helicobacter》2011,16(5):373-381
Background: Th immune response plays an important role in Helicobacter pylori (H. pylori) infection. Tim‐1 and Tim‐3 are expressed on terminally differentiated Th2 and Th1 cells, respectively, and participate in the regulation of Th immune response. Until now, the role of Tim in H. pylori infection remains unclear. Materials and Methods: (1) Lymphocytes isolated from the spleen of BALB/c mice were co‐cultured with different concentrations of viable H. pylori. Alternatively, mice were challenged by viable H. pylori to set up the H. pylori infection model. (2) The expression of Tim‐1 and Tim‐3 on mRNA level in lymphocytes or spleen of mice was determined by RT‐PCR. The percentage of Tim‐3‐positive cells was determined by flow cytometric analysis. The production of cytokine in supernatants was measured by standard sandwich cytokine ELISA. Results: (1) Co‐culture: At 12 hours, there was markedly decreased production of Tim‐1 and increased production of Tim‐3 in lymphocytes co‐cultured with H. pylori compared with normal control. The change of Th2 cytokine had the similar tendency as that of Tim‐1 expression; alternatively, the change of Th1 cytokine had the similar tendency as that of Tim‐3 expression. (2) Infection: Tim‐1 expression was declined in infected mice compared with control group; in the contrast, Tim‐3 expression was increased. Furthermore, the expression of Tim‐1 and Tim‐3 mRNA in spleen was significantly positively correlated with the level of Th2 and Th1 cytokine in gastric homogenized supernatant, respectively. Conclusion: H. pylori could inhibit the differentiation of T lymphocytes toward Th2 cells, promote the Th1 cell differentiation, and induce Th1‐biased immune response. The expression of Tim‐1 and Tim‐3 could reflect Th2 and Th1 immune response, respectively, which provide evidence for the prevention and treatment of H. pylori infection and correlation diseases through regulation of Tim‐1 and Tim‐3.  相似文献   

18.
19.
Background. Reinfection of Helicobacter pylori after eradication is rare in developed countries but most often occurs within 1 year. In the present study, we attempted to differentiate between reinfection and recrudescence of H. pylori strains between 6 months and 6 years after successful eradication in Japan, a country with a high prevalence of H. pylori infection. Materials and Methods. After successful eradication of H. pylori, 274 patients were followed up by endoscopy and urea breath test. In recurrent patients, H. pylori strains isolated initially and after recurrence were compared using PCR‐based restriction fragment length polymorphism (RFLP) analysis. Results. Recurrence of H. pylori occurred in 15 of 274 patients (5.5%) at 6 months after eradication and the annual recurrence rate was 2.0% per patient year (between 1 and 6 years). PCR‐based RFLP analysis of H. pylori strains isolated initially and after recurrence showed that 62.5% (at 6 months) and 100% (after 1 years) of bacteria were of different strains. Conclusion. Reinfection of H. pylori was not as rare at 6 months after eradication as reported previously, and up to 6 years after eradication, the annual reinfection rate is 2.0% per patient year in Japan.  相似文献   

20.
Background: Helicobacter pylori ClariRes assay is a novel commercially available real‐time PCR assay allowing H. pylori detection and clarithromycin susceptibility testing in either gastric biopsy or stool specimens. Objective: The aim of this study was to validate the novel biprobe real‐time assay in stool specimens from 217 dyspeptic children. Methods: DNA from gastric biopsies and stool specimens were obtained and submitted to the biprobe real time assay for H. pylori detection and clarithromycin susceptibility testing. Results: The sensitivity, specificity, and test accuracy were 69, 100 and 93.9% for the detection of H. pylori infection and 83.3, 100 and 95.6%, for detection of clarithromycin resistance. Conclusion: This assay proved to be appropriate for H. pylori clarithromycin susceptibility testing, particularly in children populations where a high prevalence of clarithromycin‐resistant strains is suspected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号