首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Noise pollution is commonly associated with human environments and mounting evidence indicates that noise has a variety of negative effects on wildlife. Noise has also been linked to cognitive impairment in humans and because many animals use cognitively intensive processes to overcome environmental challenges, noise pollution has the potential to interfere with cognitive function in animals living in urban areas or near roads. We experimentally examined how road traffic noise impacts avian cognitive performance by testing adult zebra finches (Taeniopygia guttata) on a battery of foraging tasks in the presence or absence of traffic noise playback. Here, we show that traffic noise reduces cognitive performance, including inhibitory control, motor learning, spatial memory and social learning, but not associative colour learning. This study demonstrates a novel mechanism through which anthropogenic noise can impact animals, namely through cognitive interference, and suggests that noise pollution may have previously unconsidered consequences for animals.  相似文献   

2.
Anthropogenic noise associated with highway construction and operation can have individual‐ and population‐level consequences for wildlife (e.g., reduced densities, decreased reproductive success, behavioral changes). We used a before–after control–impact study design to examine the potential impacts of highway construction and traffic noise on endangered golden‐cheeked warblers (Setophaga chrysoparia; hereafter warbler) in urban Texas. We mapped and monitored warbler territories before (2009–2011), during (2012–2013), and after (2014) highway construction at three study sites: a treatment site exposed to highway construction and traffic noise, a control site exposed only to traffic noise, and a second control site exposed to neither highway construction or traffic noise. We measured noise levels at varying distances from the highway at sites exposed to construction and traffic noise. We examined how highway construction and traffic noise influenced warbler territory density, territory placement, productivity, and song characteristics. In addition, we conducted a playback experiment within study sites to evaluate acute behavioral responses to highway construction noises. Noise decreased with increasing distance from the highways. However, noise did not differ between the construction and traffic noise sites or across time. Warbler territory density increased over time at all study sites, and we found no differences in warbler territory placement, productivity, behavior, or song characteristics that we can attribute to highway construction or traffic noise. As such, we found no evidence to suggest that highway construction or traffic noise had a negative effect on warblers during our study. Because human population growth will require recurring improvements to transportation infrastructure, understanding wildlife responses to anthropogenic noise associated with the construction and operation of roads is essential for effective management and recovery of prioritized species.  相似文献   

3.
The expansion of anthropogenic noise poses an emerging threat to the survival and reproductive success of various organisms. Previous investigations have focused on the detrimental effects of anthropogenic noise on the foraging behavior in some terrestrial and aquatic animals. Nevertheless, the role of airport noise in impairing foraging activities of most wild animals has been neglected. Here, we aimed to assess whether foraging behavior in free‐living Japanese pipistrelle bats (Pipistrellus abramus) can be disturbed by airport noise. We used audio recording to monitor foraging activities of bats at 11 sites around the runway of a municipal airport. We quantified noise level and spectra, aircraft activity, habitat type, nightly temperature, wind speed, and moon phase for each site. The analysis revealed that noise level and aircraft activity were significant negative predictors for the number of bat passes and feeding buzzes around the runway, even after controlling for the effects of other environmental factors. There was no marked spectral overlap between bat echolocation pulses and airport noise in the presence and absence of low‐flying aircraft. The spectro‐temporal parameters of echolocation vocalizations emitted by bats were dependent on noise level, aircraft activity, and habitat type. These results provide correlative evidence that airport noise can reduce foraging activities of wild pipistrelle bats. Our findings add to the current knowledge of adverse impacts of airport noise on foraging bats in artificial ecosystems and provide a basis for further research on the mechanisms behind noise pollution near airports.  相似文献   

4.
Purser J  Radford AN 《PloS one》2011,6(2):e17478
Acoustic noise is known to have a variety of detrimental effects on many animals, including humans, but surprisingly little is known about its impacts on foraging behaviour, despite the obvious potential consequences for survival and reproductive success. We therefore exposed captive three-spined sticklebacks (Gasterosteus aculeatus) to brief and prolonged noise to investigate how foraging performance is affected by the addition of acoustic noise to an otherwise quiet environment. The addition of noise induced only mild fear-related behaviours--there was an increase in startle responses, but no change in the time spent freezing or hiding compared to a silent control--and thus had no significant impact on the total amount of food eaten. However, there was strong evidence that the addition of noise increased food-handling errors and reduced discrimination between food and non-food items, results that are consistent with a shift in attention. Consequently, noise resulted in decreased foraging efficiency, with more attacks needed to consume the same number of prey items. Our results suggest that acoustic noise has the potential to influence a whole host of everyday activities through effects on attention, and that even very brief noise exposure can cause functionally significant impacts, emphasising the threat posed by ever-increasing levels of anthropogenic noise in the environment.  相似文献   

5.
Behavioural Response of Bats to Perceived Predation Risk While Foraging   总被引:1,自引:1,他引:0  
The ability to detect and respond to predation risk while foraging may have important fitness consequences for prey organisms. Anti‐predator behaviours may reduce the probability of mortality because of predation, but they may also be associated with reduced foraging efficiency. Several behaviours of bats have been suggested to serve as anti‐predator responses, and there is evidence that predation, particularly by avian predators such as owls, may be an important cause of bat mortality. Previous studies have attempted to determine whether predator presence affects bat behaviour when emerging from roost sites, but few have examined effects of predator presence on bat behaviour while foraging. In this study, we investigated whether foraging bats respond to predator cues by presenting bats with an acoustic cue simulating the presence of an owl. Within matched trials, which were conducted at different locations each of 18 nights, significantly fewer bat detections were recorded at owl playback stations than at control stations (no auditory cue), suggesting an avoidance response by bats. An acoustic control (i.e. station playing woodpecker calls), however, did not have significantly more detections than the stations playing the owl calls, suggesting that bats may simply be avoiding noise and more detailed investigation is warranted. Although evidence for owl predation on bats is minimal in North America, results of this study may indicate that the perceived presence of owls may represent a factor influencing the behaviour of bats while foraging.  相似文献   

6.
Acoustic detectors have become increasingly used by bat workers to investigate bat ecology and assess the impacts of anthropogenic pressures. Within these studies, the metric used, ‘bat activity’, is based on the number of bat passes, without considering the bat pass duration (i.e. each event of a bat detected within the range of an ultrasonic detector). We expected that bat pass duration may contain information about site quality in terms of foraging potential. Because bats are expected to have a more sinuous trajectory and slower velocity when they exhibit foraging behaviour, as opposed to commuting behaviour, we hypothesize a longer bat pass duration in favourable habitats; during seasons with important energetic demands; or during night peak activity. We used datasets from a large-scale acoustic bat survey (n = 2890 sites), with a total of 24,597 bat pass measures from 6 taxa, and performed GLMM modelling. We detected a significant effect of habitat type on bat pass duration for five taxa. Shorter bat pass durations were detected at the beginning of the night. We detected longer pass durations during the lactation period or just before hibernating, while weather conditions or ageing and wear of the detector rarely influenced bat pass duration. Bat pass duration appears to be a simple and easy measure for position calls on a gradient between commuting vs. foraging behaviour. We suggest that the traditional measure of bat activity may be weighted by bat pass duration by giving more weight to events with potentially stronger links to foraging behaviour.  相似文献   

7.
Acoustic noise from automobile traffic impedes communication between signaling animals. To overcome the acoustic interference imposed by anthropogenic noise, species across taxa adjust their signaling behavior to increase signal saliency. As most of the spectral energy of anthropogenic noise is concentrated at low acoustic frequencies, species with lower frequency signals are expected to be more affected. Thus, species with low-frequency signals are under stronger pressure to adjust their signaling behaviors to avoid auditory masking than species with higher frequency signals. Similarly, for a species with multiple types of signals that differ in spectral characteristics, different signal types are expected to be differentially masked. We investigate how the different call types of a Japanese stream breeding treefrog (Buergeria japonica) are affected by automobile traffic noise. Male B. japonica produce two call types that differ in their spectral elements, a Type I call with lower dominant frequency and a Type II call with higher dominant frequency. In response to acoustic playbacks of traffic noise, B. japonica reduced the duration of their Type I calls, but not Type II calls. In addition, B. japonica increased the call effort of their Type I calls and decreased the call effort of their Type II calls. This result contrasts with prior studies in other taxa, which suggest that signalers may switch to higher frequency signal types in response to traffic noise. Furthermore, the increase in Type I call effort was only a short-term response to noise, while reduced Type II call effort persisted after the playbacks had ended. Overall, such differential effects on signal types suggest that some social functions will be disrupted more than others. By considering the effects of anthropogenic noise across multiple signal types, these results provide a more in-depth understanding of the behavioral impacts of anthropogenic noise within a species.  相似文献   

8.
Anthropogenic noise is an emerging global pollutant. Road networks and energy extraction infrastructure are both spatially extensive and rapidly expanding sources of noise. We predict that predators reliant on acoustic cues for hunting are particularly sensitive to louder environments. Here we examined the foraging efficiency of pallid bats (Antrozous pallidus) when exposed to played‐back traffic and gas compressor station noise in the laboratory. We show that both types of noise at each of five exposure levels (58–76 dBA, 10–640 m from source) and low‐level amplifier noise (35 dBA) increase the time required for bats to locate prey‐generated sounds by twofold to threefold. The mechanism underlying these findings is unclear and, given the potential landscape‐level habitat degradation indicated by our data, we recommend continued research into the effects of noise exposure on acoustically specialized predators.  相似文献   

9.
It has been argued that widespread extinctions of top predators have changed terrestrial ecosystem structures through mesopredator release, where increased abundances of medium-sized predators have detrimental effects on prey communities. This top-down concept has received much attention within conservation biology, but few studies have demonstrated the phenomenon. The concept has been criticized since alternative explanations involving bottom-up impacts from bioclimatic effects on ecosystem productivity and from anthropogenic habitat change are rarely considered. We analyse the response of a mesopredator (the red fox) to declines in top predators (wolf and Eurasian lynx) and agricultural expansion over 90 years in Sweden, taking bioclimatic effects into account. We show a top-down mesopredator release effect, but ecosystem productivity determined its strength. The impacts of agricultural activity were mediated by their effects on top predator populations. Thus, both top-down and bottom-up processes need to be understood for effective preservation of biodiversity in anthropogenically transformed ecosystems.  相似文献   

10.
The exchange of organisms and energy among ecosystems has major impacts on food web structure and dynamics, yet little is known about how climate warming combines with other pervasive anthropogenic perturbations to affect such exchanges. We used an outdoor freshwater mesocosm experiment to investigate the interactive effects of warming, eutrophication, and changes in top predators on the flux of biomass between aquatic and terrestrial ecosystems. We demonstrated that predatory fish decoupled aquatic and terrestrial ecosystems by reducing the emergence of aquatic organisms and suppressing the decomposition of terrestrial plant detritus. In contrast, warming and nutrients enhanced cross‐ecosystem exchanges by increasing emergence and decomposition, and these effects were strongest in the absence of predators. Furthermore, we found that warming advanced while predators delayed the phenology of insect emergence. Our results demonstrate that anthropogenic perturbations may extend well beyond ecosystem boundaries by influencing cross‐ecosystem subsidies. We find that these changes are sufficient to substantially impact recipient communities and potentially alter the carbon balance between aquatic and terrestrial ecosystems and the atmosphere.  相似文献   

11.
Progress in the study of ecosystem impacts of invasive species can be facilitated by moving from the evaluation of invasive species impacts on particular processes to the analysis of their overall effects on ecosystem functioning. Here we propose an integrative ecosystem-based approach to the analysis of invasive species impacts that is based on an understanding of the general mechanistic links between biotic factors, abiotic factors, and processes in ecosystems. Two general kinds of biotic mediation – direct and indirect – and two general mechanisms of invasive species impact – assimilatory–dissimilatory (uptake and release of energy and materials) and physical ecosystem engineering (physical environmental modification by organisms) – are most relevant. By combining the biotic mediation pathways and the general mechanisms, four general situations emerge that characterize a great many of the impacts invasive species can have on ecosystem processes. We propose ways to integrate these distinctive impacts into general mechanistic representations that link ecosystem processes with changes in biotic and abiotic states (changes in structure, composition, amount, process rates, etc.). In turn, these help generate predictions about the interplay of invasive species and other drivers of ecosystem processes that are of particular relevance to ecosystems where invasive species co-occur with other anthropogenic impacts.  相似文献   

12.
Anthropogenic noise is now recognized as a major global pollutant. Rapidly burgeoning research has identified impacts on individual behaviour and physiology through to community disruption. To date, however, there has been an almost exclusive focus on vertebrates. Not only does their central role in food webs and in fulfilling ecosystem services make imperative our understanding of how invertebrates are impacted by all aspects of environmental change, but also many of their inherent characteristics provide opportunities to overcome common issues with the current anthropogenic noise literature. Here, we begin by explaining why invertebrates are likely to be affected by anthropogenic noise, briefly reviewing their capacity for hearing and providing evidence that they are capable of evolutionary adaptation and behavioural plasticity in response to natural noise sources. We then discuss the importance of quantifying accurately and fully both auditory ability and noise content, emphasizing considerations of direct relevance to how invertebrates detect sounds. We showcase how studying invertebrates can help with the behavioural bias in the literature, the difficulties in drawing strong, ecologically valid conclusions and the need for studies on fitness impacts. Finally, we suggest avenues of future research using invertebrates that would advance our understanding of the impact of anthropogenic noise.  相似文献   

13.
Non-consumptive effects (NCEs) of predators occur as prey alters their habitat use and foraging decisions to avoid predation. Although NCEs are recognized as being important across disparate ecosystems, the factors influencing their strength and importance remain poorly understood. Ecological context, such as time of day, predator identity, and prey condition, may modify how prey species perceive and respond to risk, thereby altering NCEs. To investigate how predator identity affects foraging of herbivorous coral reef fishes, we simulated predation risk using fiberglass models of two predator species (grouper Mycteroperca bonaci and barracuda Sphyraena barracuda) with different hunting modes. We quantified how predation risk alters herbivory rates across space (distance from predator) and time (dawn, mid-day, and dusk) to examine how prey reconciles the conflicting demands of avoiding predation vs. foraging. When we averaged the effect of both predators across space and time, they suppressed herbivory similarly. Yet, they altered feeding differently depending on time of day and distance from the model. Although feeding increased strongly with increasing distance from the predators particularly during dawn, we found that the barracuda model suppressed herbivory more strongly than the grouper model during mid-day. We suggest that prey hunger level and differences in predator hunting modes could influence these patterns. Understanding how context mediates NCEs provides insight into the emergent effects of predator–prey interactions on food webs. These insights have broad implications for understanding how anthropogenic alterations to predator abundances can affect the spatial and temporal dynamics of important ecosystem processes.  相似文献   

14.
In a consistently urbanizing world, anthropogenic noise has become almost omnipresent, and there are increasing evidence that high noise levels can have major impacts on wildlife. While the effects of anthropogenic noise exposure on adult animals have been widely studied, surprisingly, there has been little consideration of the effects of noise pollution on developing organisms. Yet, environmental conditions experienced in early life can have dramatic lifelong consequences for fitness. Here, we experimentally manipulated the acoustic environment of free-living house sparrows (Passer domesticus) breeding in nest boxes. We focused on the impact of such disturbance on nestlings’ telomere length and fledging success, as telomeres (the protective ends of chromosomes) appear to be a promising predictor of longevity. We showed that despite the absence of any obvious immediate consequences (growth and fledging success), nestlings reared under traffic noise exposure exhibited reduced telomere lengths compared with their unexposed neighbours. Although the mechanisms responsible for this effect remain to be determined, our results provide the first experimental evidence that noise alone can affect a wild vertebrate''s early-life telomere length. This suggests that noise exposure may entail important costs for developing organisms.  相似文献   

15.
Noise is one of a wide range of disturbances associated with human activities that have been shown to have detrimental impacts on a wide range of species, from montane regions to the deep marine environment. Noise may also have community-level impacts via predator–prey interactions, thus jeopardising the stability of trophic networks. However, the impact of noise on freshwater ecosystems is largely unknown. Even more so is the case of insects, despite their crucial role in trophic networks. Here, we study the impact of underwater noise on the predatory functional response of damselfly larvae. We compared the feeding rates of larvae under anthropogenic noise, natural noise, and silent conditions. Our results suggest that underwater noise (pooling the effects of anthropogenic noise and natural noise) decreases the feeding rate of damselflies significantly compared to relatively silent conditions. In particular, natural noise increased the handling time significantly compared to the silent treatment, thus reducing the feeding rate. Unexpectedly, feeding rates under anthropogenic noise were not reduced significantly compared to silent conditions. This study suggests that noise per se may not necessarily have negative impacts on trophic interactions. Instead, the impact of noise on feeding rates may be explained by the presence of nonlinearities in acoustic signals, which may be more abundant in natural compared to anthropogenic noise. We conclude by highlighting the importance of studying a diversity of types of acoustic pollution, and encourage further work regarding trophic interactions with insects using a functional response approach.  相似文献   

16.
The fear induced by predators on their prey is well known to cause behavioural adjustments by prey that can ripple through food webs. Little is known, however, about the analogous impacts of humans as perceived top predators on the foraging behaviour of carnivores. Here, we investigate the influence of human-induced fear on puma foraging behaviour using location and prey consumption data from 30 tagged individuals living along a gradient of human development. We observed strong behavioural responses by female pumas to human development, whereby their fidelity to kill sites and overall consumption time of prey declined with increasing housing density by 36 and 42%, respectively. Females responded to this decline in prey consumption time by increasing the number of deer they killed in high housing density areas by 36% over what they killed in areas with little residential development. The loss of food from declines in prey consumption time paired with increases in energetic costs associated with killing more prey may have consequences for puma populations, particularly with regard to reproductive success. In addition, greater carcass availability is likely to alter community dynamics by augmenting food resources for scavengers. In light of the extensive and growing impact of habitat modification, our study emphasizes that knowledge of the indirect effects of human activity on animal behaviour is a necessary component in understanding anthropogenic impacts on community dynamics and food web function.  相似文献   

17.
Animals exposed to anthropogenic disturbance make trade-offs between perceived risk and the cost of leaving disturbed areas. Impact assessments tend to focus on overt behavioural responses leading to displacement, but trade-offs may also impact individual energy budgets through reduced foraging performance. Previous studies found no evidence for broad-scale displacement of harbour porpoises exposed to impulse noise from a 10 day two-dimensional seismic survey. Here, we used an array of passive acoustic loggers coupled with calibrated noise measurements to test whether the seismic survey influenced the activity patterns of porpoises remaining in the area. We showed that the probability of recording a buzz declined by 15% in the ensonified area and was positively related to distance from the source vessel. We also estimated received levels at the hydrophones and characterized the noise response curve. Our results demonstrate how environmental impact assessments can be developed to assess more subtle effects of noise disturbance on activity patterns and foraging efficiency.  相似文献   

18.
The influence of human activity on the biosphere is increasing. While direct damage (e.g. habitat destruction) is relatively well understood, many activities affect wildlife in less apparent ways. Here, we investigate how anthropogenic noise impairs foraging, which has direct consequences for animal survival and reproductive success. Noise can disturb foraging via several mechanisms that may operate simultaneously, and thus, their effects could not be disentangled hitherto. We developed a diagnostic framework that can be applied to identify the potential mechanisms of disturbance in any species capable of detecting the noise. We tested this framework using Daubenton's bats, which find prey by echolocation. We found that traffic noise reduced foraging efficiency in most bats. Unexpectedly, this effect was present even if the playback noise did not overlap in frequency with the prey echoes. Neither overlapping noise nor nonoverlapping noise influenced the search effort required for a successful prey capture. Hence, noise did not mask prey echoes or reduce the attention of bats. Instead, noise acted as an aversive stimulus that caused avoidance response, thereby reducing foraging efficiency. We conclude that conservation policies may seriously underestimate numbers of species affected and the multilevel effects on animal fitness, if the mechanisms of disturbance are not considered.  相似文献   

19.
Post-dispersal seed predation by slugs is increasingly being acknowledged as a potentially important contribution to this ecosystem function. However, specific drivers of predation rates in different landscape contexts are still unknown. We assessed the role of slugs as facultative seed predators along an urban–rural gradient and identified scale-dependent anthropogenic drivers that might affect either slugs or their function as seed predators.We used a combination of seed cafeterias and pitfall traps in grassy areas of eleven schoolyards and five field margins surrounded by different land-use types to assess slug activity density and seed predation rates and quantified urbanization, habitat heterogeneity and microhabitat structure.We show that slugs are important seed predators regardless of anthropogenic land use. Their activity density was a significant predictor for seed predation but increases in woody vegetation and bare soil also increased seed predation. This indicates that the magnitude of seed predation might also be affected by slug foraging activity and feeding behaviour, which might be influenced by habitat features such as the availability of vegetation and bare soil. Our results suggest that not only assessing the activity density (as proxy for relative abundance) of seed predators but also identifying effects on their feeding patterns and behaviour might increase our mechanistic understanding of relationships between land-use changes and seed predation and their impact on cultivated and wild plant species.  相似文献   

20.
Ecological research has focused on understanding how changes in consumer abundance affects community structure and ecosystem processes. However, there is increasing evidence that evolutionary changes in consumers can also alter community structure and ecosystem processes. Typically, the effects of consumer phenotype on communities and ecosystem processes are measured as net effects that integrate numerous ecological pathways. Here, we analyze new data from experimental manipulations of Trinidadian guppy Poecilia reticulata presence, density and phenotype to examine how effects on the algal community cause changes in gross‐primary production (GPP). We combine analytical tools borrowed from path analysis with experimental exclosures in mesocosms to separate the ecological and evolutionary effects of guppies into direct and indirect components. We show that the evolutionary effects of guppy phenotype act through different ecological pathways than the effects of guppy presence and density on GPP. As reported in previous studies that used a different measure of algal biomass, adding guppies and doubling their densities decreased algal biovolume through direct effects. In contrast to these previously reported results, exchanging guppy phenotypes that live without predators for phenotypes that live with predators did not affect algal biovolume. Instead, guppies from populations that live with predators increased the diversity of algal species and increased GPP compared to guppies that live without predators. These changes in the algal community were driven primarily by guppy phenotypes that live with predators—algal communities in mesocosms without fish were similar to those with guppies from predator‐free locations, but both were different from mesocosms with guppies from populations that live with predators. Changes in the algal community were driven directly by differences in foraging behavior between the two consumer phenotypes. We reconcile these results with our previous findings, thereby enhancing our understanding of the relationship between ecological and evolutionary processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号