首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
The cylindrical chaperonin GroEL and its lid-shaped cofactor GroES of Escherichia coli have an essential role in assisting protein folding by transiently encapsulating non-native substrate in an ATP-regulated mechanism. It remains controversial whether the chaperonin system functions solely as an infinite dilution chamber, preventing off-pathway aggregation, or actively enhances folding kinetics by modulating the folding energy landscape. Here we developed single-molecule approaches to distinguish between passive and active chaperonin mechanisms. Using low protein concentrations (100 pM) to exclude aggregation, we measured the spontaneous and GroEL/ES-assisted folding of double-mutant maltose binding protein (DM-MBP) by single-pair fluorescence resonance energy transfer and fluorescence correlation spectroscopy. We find that GroEL/ES accelerates folding of DM-MBP up to 8-fold over the spontaneous folding rate. Accelerated folding is achieved by encapsulation of folding intermediate in the GroEL/ES cage, independent of repetitive cycles of protein binding and release from GroEL. Moreover, photoinduced electron transfer experiments provided direct physical evidence that the confining environment of the chaperonin restricts polypeptide chain dynamics. This effect is mediated by the net-negatively charged wall of the GroEL/ES cavity, as shown using the GroEL mutant EL(KKK2) in which the net-negative charge is removed. EL(KKK2)/ES functions as a passive cage in which folding occurs at the slow spontaneous rate. Taken together our findings suggest that protein encapsulation can accelerate folding by entropically destabilizing folding intermediates, in strong support of an active chaperonin mechanism in the folding of some proteins. Accelerated folding is biologically significant as it adjusts folding rates relative to the speed of protein synthesis.  相似文献   

2.
The cylindrical chaperonin GroEL of E. coli and its ring-shaped cofactor GroES cooperate in mediating the ATP-dependent folding of a wide range of polypeptides in vivo and in vitro. By binding to the ends of the GroEL cylinder, GroES displaces GroEL-bound polypeptide into an enclosed folding cage, thereby preventing protein aggregation during folding. The dynamic interaction of GroEL and GroES is regulated by the GroEL ATPase and involves the formation of asymmetrical GroEL:GroES1 and symmetrical GroEL: GroES2 complexes. The proposed role of the symmetrical complex as a catalytic intermediate of the chaperonin mechanism has been controversial. It has also been suggested that the formation of GroEL:GroES2 complexes allows the folding of two polypeptide molecules per GroEL reaction cycle, one in each ring of GroEL. By making use of a procedure to stabilize chaperonin complexes by rapid crosslinking for subsequent analysis by native PAGE, we have quantified the occurrence of GroEL:GroES1 and GroEL:GroES2 complexes in active refolding reactions under a variety of conditions using mitochondrial malate dehydrogenase (mMDH) as a substrate. Our results show that the symmetrical complexes are neither required for chaperonin function nor does their presence significantly increase the rate of mMDH refolding. In contrast, chaperonin-assisted folding is strictly dependent on the formation of asymmetrical GroEL:GroES1 complexes. These findings support the view that GroEL:GroES2 complexes have no essential role in the chaperonin mechanism.  相似文献   

3.
One of the proposed roles of the GroEL-GroES cavity is to provide an "infinite dilution" folding chamber where protein substrate can fold avoiding deleterious off-pathway aggregation. Support for this hypothesis has been strengthened by a number of studies that demonstrated a mandatory GroES requirement under nonpermissive solution conditions, i.e., the conditions where proteins cannot spontaneously fold. We have found that the refolding of glutamine synthetase (GS) does not follow this pattern. In the presence of natural osmolytes trimethylamine N-oxide (TMAO) or potassium glutamate, refolding GS monomers readily aggregate into very large inactive complexes and fail to reactivate even at low protein concentration. Surprisingly, under these "nonpermissive" folding conditions, GS can reactivate with GroEL and ATP alone and does not require the encapsulation by GroES. In contrast, the chaperonin dependent reactivation of GS under another nonpermissive condition of low Mg2+ (<2 mM MgCl2) shows an absolute requirement of GroES. High-performance liquid chromatography gel filtration analysis and irreversible misfolding kinetics show that a major species of the GS folding intermediates, generated under these "low Mg2+" conditions exist as long-lived metastable monomers that can be reactivated after a significantly delayed addition of the GroEL. Our results indicate that the GroES requirement for refolding of GS is not simply dictated by the aggregation propensity of this protein substrate. Our data also suggest that the GroEL-GroES encapsulated environment is not required under all nonpermissive folding conditions.  相似文献   

4.
The GroEL/GroES chaperonin system mediates the folding of a range of newly synthesized polypeptides in the bacterial cytosol. Using a rapid biotin-streptavidin-based inhibition of chaperonin function, we show that the cage formed by GroEL and its cofactor GroES can have a dual role in promoting folding. First, enclosure of nonnative protein in the GroEL:GroES complex is essential for folding to proceed unimpaired by aggregation. Second, folding inside the cage can be significantly faster than folding in free solution, independently of ATP-driven cycles of GroES binding and release. This suggests that confinement of unfolded protein in the narrow hydrophilic space of the chaperonin cage smoothes the energy landscape for the folding of some proteins, increasing the flux of folding intermediates toward the native state.  相似文献   

5.
Although GroE chaperonins and osmolytes had been used separately as protein folding aids, combining these two methods provides a considerable advantage for folding proteins that cannot fold with either osmolytes or chaperonins alone. This technique rapidly identifies superior folding solution conditions for a broad array of proteins that are difficult or impossible to fold by other methods. While testing the broad applicability of this technique, we have discovered that osmolytes greatly simplify the chaperonin reaction by eliminating the requirement for the co-chaperonin GroES which is normally involved in encapsulating folding proteins within the GroEL–GroES cavity. Therefore, combinations of soluble or immobilized GroEL, osmolytes and ATP or even ADP are sufficient to refold the test proteins. The first step in the chaperonin/osmolyte process is to form a stable long-lived chaperonin–substrate protein complex in the absence of nucleotide. In the second step, different osmolyte solutions are added along with nucleotides, thus forming a ‘folding array’ to identify superior folding conditions. The stable chaperonin–substrate protein complex can be concentrated or immobilized prior to osmolyte addition. This procedure prevents-off pathway aggregation during folding/refolding reactions and more importantly allows one to refold proteins at concentrations (~mg/ml) that are substantially higher than the critical aggregation concentration for given protein. This technique can be used for successful refolding of proteins from purified inclusion bodies. Recently, other investigators have used our chaperonin/osmolyte method to demonstrate that a mutant protein that misfolds in human disease can be rescued by GroEL/osmolyte system. Soluble or immobilized GroEL can be easily removed from the released folded protein using simple separation techniques. The method allows for isolation of folded monomeric or oligomeric proteins in quantities sufficient for X-ray crystallography or NMR structural determinations.  相似文献   

6.
S J Landry  L M Gierasch 《Biochemistry》1991,30(30):7359-7362
Chaperones facilitate folding and assembly of nascent polypeptides in vivo and prevent aggregation in refolding assays in vitro. A given chaperone acts on a number of different proteins. Thus, chaperones must recognize features present in incompletely folded polypeptide chains and not strictly dependent on primary structural information. We have used transferred nuclear Overhauser effects to demonstrate that the Escherichia coli chaperonin GroEL binds to a peptide corresponding to the N-terminal alpha-helix in rhodanese, a mitochondrial protein whose in vitro refolding is facilitated by addition of GroEL, GroES, and ATP. Furthermore, the peptide, which is unstructured when free in aqueous solution, adopts an alpha-helical conformation upon binding to GroEL. Modification of the peptide to reduce its intrinsic propensity to take up alpha-helical structure lowered its affinity for GroEL, but, nonetheless, it could be bound and took up a helical conformation when bound. We propose that GroEL interacts with sequences in an incompletely folded chain that have the potential to adopt an amphipathic alpha-helix and that the chaperonin binding site promotes formation of a helix.  相似文献   

7.
GroE facilitates refolding of citrate synthase by suppressing aggregation.   总被引:21,自引:0,他引:21  
The molecular chaperone GroE facilitates correct protein folding in vivo and in vitro. The mode of action of GroE was investigated by using refolding of citrate synthase as a model system. In vitro denaturation of this dimeric protein is almost irreversible, since the refolding polypeptide chains aggregate rapidly, as shown directly by a strong, concentration-dependent increase in light scattering. The yields of reactivated citrate synthase were strongly increased upon addition of GroE and MgATP. GroE inhibits aggregation reactions that compete with correct protein folding, as indicated by specific suppression of light scattering. GroEL rapidly forms a complex with unfolded or partially folded citrate synthase molecules. In this complex the refolding protein is protected from aggregation. Addition of GroES and ATP hydrolysis is required to release the polypeptide chain bound to GroEL and to allow further folding to its final, active state.  相似文献   

8.
Despite a vast amount information on the interplay of GroEL, GroES, and ATP in chaperone-assisted folding, the molecular details on the conformational dynamics of folding polypeptide during its GroEL/GroES-assisted folding cycle is quite limited. Practically no such studies have been reported to date on large proteins, which often have difficulty folding in vitro. The effect of the GroEL/GroES chaperonin system on the folding pathway of an 82-kDa slow folding protein, malate synthase G (MSG), was investigated. GroEL bound to the burst phase intermediate of MSG and accelerated the slowest kinetic phase associated with the formation of native topology in the spontaneous folding pathway. GroEL slowly induced conformational changes on the bound burst phase intermediate, which was then transformed into a more folding-compatible form. Subsequent addition of ATP or GroES/ATP to the GroEL-MSG complex led to the formation of the native state via a compact intermediate with the rate several times faster than that of spontaneous refolding. The presence of GroES doubled the ATP-dependent reactivation rate of bound MSG by preventing multiple cycles of its GroEL binding and release. Because GroES bound to the trans side of GroEL-MSG complex, it may be anticipated that confinement of the substrate underneath the co-chaperone is not required for accelerating the rate in the assisted folding pathway. The potential role of GroEL/GroES in assisted folding is most likely to modulate the conformation of MSG intermediates that can fold faster and thereby eliminate the possibility of partial aggregation caused by the slow folding intermediates during its spontaneous refolding pathway.  相似文献   

9.
We have studied the effect of the components of the GroE molecular chaperone machine on the refolding of the Escherichia coli enzyme beta-galactosidase, a tetrameric protein whose 116-kDa promoters should not completely fit within the central cavity of the GroEL toroid. In the absence of other additives, GroEL formed a weak complex with chemically denatured beta-galactosidase, reduced its propensity to aggregate, and increased the recovery yields of active enzyme twofold without altering its folding pathway. When present together with the chaperonin, ATP--and to a lesser extent AMP-PNP--reduced the recovery yields and led to the resumption of aggregation. The use of the complete chaperonin system (GroEL, GroES, and ATP) eliminated the GroEL-mediated increase in recovery and folding proceeded less efficiently than in buffer alone. This unusual behavior can be explained in terms of a chaperonin "buffering" effect and the different affinities of GroE complexes for denatured beta-galactosidase.  相似文献   

10.
Martin J 《Biochemistry》2002,41(15):5050-5055
Macromolecular crowding is a critical parameter affecting the efficiency of cellular protein folding. Here we show that the proteins dihydrofolate reductase, enolase, and green fluorescent protein, which can fold spontaneously in diluted buffer, lose this ability in a crowded environment. Instead, they accumulate as soluble, protease-sensitive non-native species. Their folding becomes dependent on the complete GroEL/GroES chaperonin system and is not affected by trap-GroEL, indicating that folding has to occur in the chaperonin cavity with release of nativelike proteins into the bulk solution. In addition, we demonstrate that efficient folding in the chaperonin cavity requires ATP hydrolysis, as formation of ternary GroEL/GroES complexes with substrate proteins in the presence of ADP results only in very inefficient reactivation. However, protein refolding reactions using ADP-fluoroaluminate complexes, or single-ring GroEL and GroES under conditions where only a single round of ATP hydrolysis occurs, yield large amounts of refolded enzymes. Thus, the mode of initial ternary complex formation appears to be critical for subsequent productive release of substrate into the cavity under certain crowding conditions, and is only efficient when triggered by ATP hydrolysis. Our data indicate that stringent conditions of crowding can impart a stronger dependence of folding proteins on the assistance by chaperonins.  相似文献   

11.
In mediating protein folding, chaperonin GroEL and cochaperonin GroES form an enclosed chamber for substrate proteins in an ATP-dependent manner. The essential role of the double ring assembly of GroEL is demonstrated by the functional deficiency of the single ring GroEL(SR). The GroEL(SR)-GroES is highly stable with minimal ATPase activity. To restore the ATP cycle and the turnover of the folding chamber, we sought to weaken the GroEL(SR)-GroES interaction systematically by concatenating seven copies of groES to generate groES(7). GroES Ile-25, Val-26, and Leu-27, residues on the GroEL-GroES interface, were substituted with Asp on different groES modules of groES(7). GroES(7) variants activate ATP activity of GroEL(SR), but only some restore the substrate folding function of GroEL(SR), indicating a direct role of GroES in facilitating substrate folding through its dynamics with GroEL. Active GroEL(SR)-GroES(7) systems may resemble mammalian mitochondrial chaperonin systems.  相似文献   

12.
The E. coli chaperonin GroEL and its cofactor GroES promote protein folding by sequestering nonnative polypeptides in a cage-like structure. Here we define the contribution of this system to protein folding across the entire E. coli proteome. Approximately 250 different proteins interact with GroEL, but most of these can utilize either GroEL or the upstream chaperones trigger factor (TF) and DnaK for folding. Obligate GroEL-dependence is limited to only approximately 85 substrates, including 13 essential proteins, and occupying more than 75% of GroEL capacity. These proteins appear to populate kinetically trapped intermediates during folding; they are stabilized by TF/DnaK against aggregation but reach native state only upon transfer to GroEL/GroES. Interestingly, substantially enriched among the GroEL substrates are proteins with (betaalpha)8 TIM-barrel domains. We suggest that the chaperonin system may have facilitated the evolution of this fold into a versatile platform for the implementation of numerous enzymatic functions.  相似文献   

13.
The GroEL/GroES chaperonin system of Escherichia coli forms a nano-cage allowing single protein molecules to fold in isolation. However, as the chaperonin can also mediate folding independently of substrate encapsulation, it remained unclear whether the folding cage is essential in vivo. To address this question, we replaced wild-type GroEL with mutants of GroEL having either a reduced cage volume or altered charge properties of the cage wall. A stepwise reduction in cage size resulted in a gradual loss of cell viability, although the mutants bound non-native protein efficiently. Strikingly, a mild reduction in cage size increased the yield and the apparent rate of green fluorescent protein folding, consistent with the view that an effect of steric confinement can accelerate folding. As shown in vitro, the observed acceleration of folding was dependent on protein encapsulation by GroES but independent of GroES cycling regulated by the GroEL ATPase. Altering the net-negative charge of the GroEL cage wall also strongly affected chaperonin function. Based on these findings, the GroEL/GroES compartment is essential for protein folding in vivo.  相似文献   

14.
The GroEL chaperonin has the ability to behave as an unfoldase, repeatedly denaturing proteins upon binding, which in turn can free them from kinetic traps and increase their folding rates. The complex formed by GroEL+GroES+ATP can also act as an infinite dilution cage, enclosing proteins within a protective container where they can fold without danger of aggregation. Controversy remains over which of these two properties is more critical to the GroEL/ES chaperonin's function. We probe the importance of the unfoldase nature of GroEL under conditions where aggregation is the predominant protein degradation pathway. We consider the effect of a hypothetical mutation to GroEL which increases the cycle frequency of GroEL/ES by increasing the rate of hydrolysis of GroEL-bound ATP. Using a simple kinetic model, we show that this modified chaperonin would be self-defeating: any potential reduction in folding time would be negated by an increase in time spent in the bulk, causing an increase in aggregation and a net decrease in protein folding yields.  相似文献   

15.
The refolding of the tetrameric enzyme tryptophanase was facilitated by the chaperonin GroE. Maximum refolding yield of tryptophanase molecules (about 80%) was attained in the presence of a 15-fold excess of GroE 21-mer over tryptophanase monomer. The GroEL subunit was required for this improvement in refolding yield, whereas the GroES subunit was not. Light scattering experiments of the refolding reaction revealed that GroE bound to tryptophanase folding intermediates and suppressed their aggregation. The presence of ATP was required for the efficient dissociation of tryptophanase from GroEL. However, our experiments indicated that tryptophanase dissociated readily from GroEL in the presence of not only ATP, but also in the presence of non-hydrolyzable ATP analogues such as ATP gamma S (adenosine 5'-O-(3-thiotriphosphate)) and AMP-PNP (adenyl-5'-yl imidodiphosphate) as well. Surprisingly, the release of tryptophanase from GroEL was facilitated in the presence of ADP as well. We concluded that the binding of nucleotides such as ATP and ADP changed the conformation of GroEL and facilitated the dissociation of tryptophanase molecules. The conformation formed in the presence of ADP was distinct from the conformation formed in the presence of ATP, as shown by the selective dissociation of various folding proteins from the two conformations.  相似文献   

16.
One of the most interesting facets of GroEL-facilitated protein folding lies in the fact that the requirement for a successful folding reaction of a given protein target depends upon the refolding conditions used. In this report, we utilize a mutant of GroEL (GroEL T89W) whose domain movements have been drastically restricted, producing a chaperonin that is incapable of utilizing the conventional cyclic mechanism of chaperonin action. This mutant was, however, still capable of improving the refolding yield of lactate dehydrogenase in the absence of both GroES and ATP hydrolysis. A very rapid interconversion of conformations was detected in the mutant immediately after ATP binding, and this interconversion was inferred to form part of the target release mechanism in this mutant. The possibility exists that some target proteins, although dependent on GroEL for improved refolding yields, are capable of refolding successfully by utilizing only portions of the entire mechanism provided by the chaperonins.  相似文献   

17.
The commonly accepted dogma of the bacterial GroE chaperonin system entails protein folding mediated by cycles of several ATP-dependent sequential steps where GroEL interacts with the folding client protein. In contrast, we herein report GroES-mediated dynamic remodeling (expansion and compression) of two different protein substrates during folding: the endogenous substrate MreB and carbonic anhydrase (HCAII), a well-characterized protein folding model. GroES was also found to influence GroEL binding induced unfolding and compression of the client protein underlining the synergistic activity of both chaperonins, even in the absence of ATP. This previously unidentified activity by GroES should have important implications for understanding the chaperonin mechanism and cellular stress response. Our findings necessitate a revision of the GroEL/ES mechanism.  相似文献   

18.
Despite extensive structural and kinetic studies, the mechanism by which the Escherichia coli chaperonin GroEL assists protein folding has remained somewhat elusive. It appears that GroEL might play an active role in facilitating folding, in addition to its role in restricting protein aggregation by secluding folding intermediates. We have investigated the kinetic mechanism of GroEL-mediated refolding of the small protein barstar. GroEL accelerates the observed fast (millisecond) refolding rate, but it does not affect the slow refolding kinetics. A thermodynamic coupling mechanism, in which the concentration of exchange-competent states is increased by the law of mass action, can explain the enhancement of the fast refolding rates. It is not necessary to invoke a catalytic role for GroEL, whereby either the intrinsic refolding rate of a productive folding transition or the unfolding rate of a kinetically trapped off-pathway intermediate is increased by the chaperonin.  相似文献   

19.
The mechanism of assisted protein folding by the chaperonin GroEL alone or in complex with the co-chaperonin GroES and in the presence or absence of nucleotides has been subject to extensive investigations during the last years. In this paper we present data where we have inactivated GroEL by stepwise blocking the nucleotide binding sites using the non-hydrolyzable ATP analogue, (Cr(H2O)4)3+ATP. We correlated the amount of accessible nucleotide binding sites with the residual ATP hydrolysis activity of GroEL as well as the residual refolding activity for two different model substrates. Under the conditions used, folding of the substrate proteins and ATP hydrolysis were directly proportional to the residual, accessible nucleotide binding sites. In the presence of GroES, 50% of the nucleotide binding sites were protected from inactivation by CrATP and the resulting protein retains 50% of both ATPase and refolding activity. The results strongly suggest that under the conditions used in our experiments, the nucleotide binding sites are additive in character and that by blocking of a certain number of binding sites a proportional amount of ATP hydrolysis and refolding activities are inactivated. The experiments including GroES suggest that full catalytic activity of GroEL requires both rings of the chaperonin. Blocking of the nucleotide binding sites of one ring still allows function of the second ring.  相似文献   

20.
The chaperonin GroEL binds nonnative proteins too large to fit inside the productive GroEL-GroES cis cavity, but whether and how it assists their folding has remained unanswered. We have examined yeast mitochondrial aconitase, an 82 kDa monomeric Fe(4)S(4) cluster-containing enzyme, observed to aggregate in chaperonin-deficient mitochondria. We observed that aconitase folding both in vivo and in vitro requires both GroEL and GroES, and proceeds via multiple rounds of binding and release. Unlike the folding of smaller substrates, however, this mechanism does not involve cis encapsulation but, rather, requires GroES binding to the trans ring to release nonnative substrate, which likely folds in solution. Following the phase of ATP/GroES-dependent refolding, GroEL stably bound apoaconitase, releasing active holoenzyme upon Fe(4)S(4) cofactor formation, independent of ATP and GroES.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号