首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of pyrophosphate (PPi) on labeled nucleotide incorporation into noncatalytic sites of chloroplast ATP synthase was studied. In illuminated thylakoid membranes, PPi competed with nucleotides for binding to noncatalytic sites. In the dark, PPi was capable of tight binding to noncatalytic sites previously vacated by endogenous nucleotides, thereby preventing their subsequent interaction with ADP and ATP. The effect of PPi on ATP hydrolysis kinetics was also elucidated. In the dark at micromolar ATP concentrations, PPi inhibited ATPase activity of ATP synthase. Addition of PPi to the reaction mixture at the step of preliminary illumination inhibited high initial activity of the enzyme, but stimulated its activity during prolonged incubation. These results indicate that the stimulating effect of PPi light preincubation with thylakoid membranes on ATPase activity is caused by its binding to ATP synthase noncatalytic sites. The inhibition of ATP synthase results from competition between PPi and ATP for binding to catalytic sites. Published in Russian in Biokhimiya, 2009, Vol. 74, No. 7, pp. 956–962.  相似文献   

2.
The recent finding that the presence of ATP at non-catalytic sites of chloroplast F1-ATPase (CF1) is necessary for ATPase activity (Milgrom, Y. M., Ehler, L. L., and Boyer, P. D. (1990) J. Biol. Chem. 265,18725-18728) prompted more detailed studies of the effect of noncatalytic site nucleotides on catalysis. CF1 containing at noncatalytic sites less than one ADP or about two ATP was prepared by heat activation in the absence of Mg2+ and in the presence of ADP or ATP, respectively. After removal of medium nucleotides, the CF1 preparations were used for measurement of the time course of nucleotide binding from 10 to 100 microM concentrations of 3H-labeled ADP, ATP, or GTP. The presence of Mg2+ strongly promotes the tight binding of ADP and ATP at noncatalytic sites. For example, the ADP-heat-activated enzyme in presence of 1 mM Mg2+ binds ADP with a rate constant of 0.5 x 10(6) M-1 min-1 to give an enzyme with two ADP at noncatalytic sites with a Kd of about 0.1 microM. Upon exposure to Mg2+ and ATP the vacant noncatalytic site binds an ATP rapidly and, as an ADP slowly dissociates, a second ATP binds. The binding correlates with an increase in the ATPase activity. In contrast the tight binding of [3H]GTP to noncatalytic sites gives an enzyme with no ATPase activity. The three noncatalytic sites differ in their binding properties. The noncatalytic site that remains vacant after the ADP-heat-activated CF1 is exposed to Mg2+ and ADP and that can bind ATP rapidly is designated as site A; the site that fills with ATP as ADP dissociates when this enzyme is exposed to Mg2+ and ATP is called site B, and the site to which ADP remains bound is called site C. Procedures are given for attaining CF1 with ADP at sites B and C, with GTP at sites A and/or B, and with ATP at sites A, B, and/or C, and catalytic activities of such preparations are measured. For example, little or no ATPase activity is found unless ATP is at site A, but ADP can remain at site C with no effect on ATPase. Maximal GTPase activity requires ATP at site A but about one-fifth of maximal GTPase is attained when GTP is at sites A and B and ATP at site C. Noncatalytic site occupancy can thus have profound effects on the ATPase and GTPase activities of CF1.  相似文献   

3.
Nucleotide binding properties of two vacant noncatalytic sites of thioredoxin-activated chloroplast coupling factor 1 (CF1) were studied. Kinetics of nucleotide binding to noncatalytic sites is described by the first-order equation that allows for two nucleotide binding sites that differ in kinetic features. Dependence of the nucleotide binding rate on nucleotide concentration suggests that tight nucleotide binding is preceded by rapid reversible binding of nucleotides. ADP binding is cooperative. The preincubation of CF1 with Mg2+ produces only slight effect on the rate of ADP binding and decreases the ATP binding rate. The ATP and ADP dissociation from noncatalytic sites is described by the first-order equation for similar sites with dissociation rate constants k−2(ADP)=1.5×10−1 min−1 and k−2(ATP)≅10−3 min−1, respectively. As follows from the study, the noncatalytic sites of CF1 are not homogeneous. One of them retains the major part of endogenous ADP after CF1 precipitation with ammonium sulfate. Its other two sites can bind both ADP and ATP but have different kinetic parameters and different affinity for nucleotides.  相似文献   

4.
J M Zhou  Z X Xue  Z Y Du  T Melese  P D Boyer 《Biochemistry》1988,27(14):5129-5135
Whether the tightly bound ADP that can cause a pronounced inhibition of ATP hydrolysis by the chloroplast ATP synthase and F1 ATPase (CF1) is bound at catalytic sites or at noncatalytic regulatory sites or both has been uncertain. We have used photolabeling by 2-azido-ATP and 2-azido-ADP to ascertain the location, with Mg2+ activation, of tightly bound ADP (a) that inhibits the hydrolysis of ATP by chloroplast ATP synthase, (b) that can result in an inhibited form of CF1 that slowly regains activity during ATP hydrolysis, and (c) that arises when low concentrations of ADP markedly inhibit the hydrolysis of GTP by CF1. The data show that in all instances the inhibition is associated with ADP binding without inorganic phosphate (Pi) at catalytic sites. After photophosphorylation of ADP or 2-azido-ADP with [32P]Pi, similar amounts of the corresponding triphosphates are present on washed thylakoid membranes. Trials with appropriately labeled substrates show that a small portion of the tightly bound 2-azido-ATP gives rise to covalent labeling with an ATP moiety at noncatalytic sites but that most of the bound 2-azido-ATP gives rise to covalent labeling by an ADP moiety at a catalytic site. We also report the occurrence of a 1-2-min delay in the onset of the Mg2+-induced inhibition after addition of CF1 to solutions containing Mg2+ and ATP, and that this delay is not associated with the filling of noncatalytic sites. A rapid burst of Pi formation is followed by a much lower, constant steady-state rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The interaction between sulfite, an efficient Mg2+-dependent F1-ATPase activator, and chloroplast CF1-ATPase was studied. The sulfite anion was shown to inhibit ADP and ATP binding to the noncatalytic sites of CF1. The stimulating activity of sulfite persists when all noncatalytic sites are nucleotide-occupied. Phosphate, a competing candidate for binding to CF1 catalytic sites, suppresses this activity. These results support the suggestion that the stimulation of Mg2+-dependent ATPase activity of CF1 is caused by sulfite binding to its catalytic sites.  相似文献   

6.
A modified ‘cold chase’ technique was used to study tight [14C]ADP and [14C]ATP binding to noncatalytic sites of chloroplast ATP synthase (CF0F1). The binding was very low in the dark and sharply increased with light intensity. Dissociation of labeled nucleotides incorporated into noncatalytic sites of CF0F1 or CF1 reconstituted with EDTA-treated thylakoid membranes was also found to be light-dependent. Time dependence of nucleotide dissociation is described by the first order equation with a k d of about 5 min−1. The exposure of thylakoid membranes to 0.7–24.8 μM nucleotides leads to filling of up to two noncatalytic sites of CF0F1. The sites differ in their specificity: one preferentially binds ADP, whereas the other – ATP. A much higher ATP/ADP ratio of nucleotides bound at noncatalytic sites of isolated CF1 dramatically decreases upon its reconstitution with EDTA-treated thylakoid membranes. It is suggested that the decrease is caused by conformational changes in one of the α subunits induced by its interaction with the δ subunit and/or subunit I–II when CF1 becomes bound to a thylakoid membrane.  相似文献   

7.
H+-FOF1-ATP synthase (F-ATPase, F-type ATPase, FOF1 complex) catalyzes ATP synthesis from ADP and inorganic phosphate in eubacteria, mitochondria, chloroplasts, and some archaea. ATP synthesis is powered by the transmembrane proton transport driven by the proton motive force (PMF) generated by the respiratory or photosynthetic electron transport chains. When the PMF is decreased or absent, ATP synthase catalyzes the reverse reaction, working as an ATP-dependent proton pump. The ATPase activity of the enzyme is regulated by several mechanisms, of which the most conserved is the non-competitive inhibition by the MgADP complex (ADP-inhibition). When ADP binds to the catalytic site without phosphate, the enzyme may undergo conformational changes that lock bound ADP, resulting in enzyme inactivation. PMF can induce release of inhibitory ADP and reactivate ATP synthase; the threshold PMF value required for enzyme reactivation might exceed the PMF for ATP synthesis. Moreover, membrane energization increases the catalytic site affinity to phosphate, thereby reducing the probability of ADP binding without phosphate and preventing enzyme transition to the ADP-inhibited state. Besides phosphate, oxyanions (e.g., sulfite and bicarbonate), alcohols, lauryldimethylamine oxide, and a number of other detergents can weaken ADP-inhibition and increase ATPase activity of the enzyme. In this paper, we review the data on ADP-inhibition of ATP synthases from different organisms and discuss the in vivo role of this phenomenon and its relationship with other regulatory mechanisms, such as ATPase activity inhibition by subunit ε and nucleotide binding in the noncatalytic sites of the enzyme. It should be noted that in Escherichia coli enzyme, ADP-inhibition is relatively weak and rather enhanced than prevented by phosphate.  相似文献   

8.
Z Y Du  P D Boyer 《Biochemistry》1990,29(2):402-407
Washed chloroplast thylakoid membranes upon exposure to [3H]ADP retain a tightly bound [3H]ADP on a catalytic site of the ATP synthase. The presence of sufficient endogenous or added Mg2+ results in an enzyme with essentially no ATPase activity. Sulfite activates the ATPase, and many molecules of ATP per synthase can be hydrolyzed before most of the bound [3H]ADP is released, a result interpreted as indicating that the ADP is not bound at a site participating in catalysis by the sulfite-activated enzyme [Larson, E. M., Umbach, A., & Jagendorf, A. T. (1989) Biochim. Biophys. Acta 973, 75-85]. We present evidence that this is not the case. The Mg2(+)- and ADP-inhibited enzyme when exposed to MgATP and 20-100 mM sulfite shows a lag of about 1 min at 22 degrees C and of about 15 s at 37 degrees C before reaching the same steady-state rate as attained with light-activated ATPase that has not been inhibited by Mg2+ and ADP. The lag is not eliminated if the enzyme is exposed to sulfite prior to MgATP addition, indicating that ATPase turnover is necessary for the activation. The release of most of the bound [3H]ADP parallels the onset of ATPase activity, although some [3H]ADP is not released even with prolonged catalytic turnover and may be on poorly active or inactive enzyme or at noncatalytic sites. The results are consistent with most of the tightly bound [3H]ADP being at a catalytic site and being replaced as this Mg2(+)- and ADP-inhibited site regains equivalent participation with other catalytic sites on the activated enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
F1-ATPase from Bacillus subtilis (BF1) is severely suppressed by the MgADP inhibition. Here, we have tested if this is due to the loss of nucleotide binding to the noncatalytic site that is required for the activation. Measurements with a tryptophan mutant of BF1 indicated that the noncatalytic sites could bind ATP normally. Furthermore, the mutant BF1 that cannot bind ATP to the noncatalytic sites showed much lower ATPase activity. It was concluded that the cause of strong MgADP inhibition of BF1 is not the weak nucleotide binding to the noncatalytic sites but the other steps required for the activation.  相似文献   

10.
A kinetic analysis of ATP binding to noncatalytic sites of chloroplast coupling factor CF1 was made. The ATP binding proved to be unaffected by reduction of the disulfide bridge of the CF1 -subunit. The first-order equation describing nucleotide binding to noncatalytic sites allowed for two vacant nucleotide binding sites different in their kinetics. As suggested by nucleotide concentration dependence of the rate of nucleotide binding, the tight binding was preceded by rapid reversible binding of nucleotides. Preincubation of CF1 with Mg2+ resulted in a decreased rate of ATP binding. ATP dissociation from noncatalytic sites was described by the first order equation for similar sites with a dissociation rate constant k d (ATP) 10–3 min–1. Noncatalytic sites of CF1 were shown to be not homogeneous. One of them retained the major part of endogenous ADP after precipitation of CF1 with ammonium sulfate. Its two other sites differed in kinetic parameters and affinity for ATP. Anions of phosphate, sulfite, and especially, pyrophosphate inhibited the interaction between ATP and the noncatalytic sites.  相似文献   

11.
Exposure of chloroplast F1 ATPase to 2-azido-ATP results in the noncovalent tight binding of 2-azido-ATP or 2-azido-ADP to noncatalytic or to catalytic sites. Subsequent photolysis results in covalent labeling of adjacent tryptic peptides of the beta-subunit. Binding at noncatalytic sites results in labeling of tyrosine 385 by an ATP or an ADP moiety. Binding at catalytic sites results in labeling of tyrosine 362 by only an ADP moiety. Similar labeling patterns are observed for the heat-activated or the membrane-bound enzymes.  相似文献   

12.
Although the binding of nucleotides at the noncatalytic sites of F1-ATPase has been regarded as probably having some type of regulatory function, only limited observations have been reported that support such a role. We present here results showing that the presence of ATP at noncatalytic sites can give a fivefold enhancement of the rate of GTP hydrolysis by the chloroplast F1-ATPase. Heat-activation of the chloroplast F1-ATPase in the presence of ATP, followed by column separation from the medium nucleotides gives an enzyme with two of the three noncatalytic sites filled with ATP. In contrast, heat-activation in the presence of ADP gives an enzyme with only one noncatalytic site filled with ADP. Such an enzyme with two noncatalytic sites empty catalyzes MgGTP hydrolysis only very slowly. The filling of a second noncatalytic site with ATP by exposure of the enzyme to ATP without Mg2+ present, followed by column separation, markedly increases the rate of GTP hydrolysis. A further increase occurs when a third noncatalytic site is filled by exposure to Mg2+ and ATP. The rate of MgATP hydrolysis is the same for the enzyme heat-activated in the presence of ATP or ADP, probably because MgATP, unlike MgGTP, rapidly binds to both catalytic and noncatalytic sites.  相似文献   

13.
In order to get insight into the origin of apparent negative cooperativity observed for F1-ATPase, we compared ATPase activity and ATPMg binding of mutant subcomplexes of thermophilic F1-ATPase, α(W463F)3β(Y341W)3γ and α(K175A/T176A/W463F)3β(Y341W)3γ. For α(W463F)3β(Y341W)3γ, apparent Km's of ATPase kinetics (4.0 and 233 μM) did not agree with apparent Km's deduced from fluorescence quenching of the introduced tryptophan residue (on the order of nM, 0.016 and 13 μM). On the other hand, in case of α(K175A/T176A/W463F)3β(Y341W)3γ, which lacks noncatalytic nucleotide binding sites, the apparent Km of ATPase activity (10 μM) roughly agreed with the highest Km of fluorescence measurements (27 μM). The results indicate that in case of α(W463F)3β(Y341W)3γ, the activating effect of ATP binding to noncatalytic sites dominates overall ATPase kinetics and the highest apparent Km of ATPase activity does not represent the ATP binding to a catalytic site. In case of α(K175A/T176A/W463F)3β(Y341W)3γ, the Km of ATPase activity reflects the ATP binding to a catalytic site due to the lack of noncatalytic sites. The Eadie-Hofstee plot of ATPase reaction by α(K175A/T176A/W463F)3β(Y341W)3γ was rather linear compared with that of α(W463F)3β(Y341W)3γ, if not perfectly straight, indicating that the apparent negative cooperativity observed for wild-type F1-ATPase is due to the ATP binding to catalytic sites and noncatalytic sites. Thus, the frequently observed Km's of 100-300 μM and 1-30 μM range for wild-type F1-ATPase correspond to ATP binding to a noncatalytic site and catalytic site, respectively.  相似文献   

14.
This study of ATP and ADP binding to noncatalytic sites of membrane-bound CF1 (ATP synthase) revealed two noncatalytic sites with different specificities and affinities for nucleotides. One of these is characterized by a high affinity and specificity to ADP (Kd=2.6+/-0.3 microM). However, a certain increase in ADP apparent dissociation constant at high ATP/ADP ratio in the medium allows a possibility that ATP binds to this site as well. The other site displays high specificity to ATP. When the ADP-binding site is vacant, it shows a comparatively low affinity for ATP, which greatly increases with increasing ADP concentration accompanied by filling of the ADP-binding site. The reported specificities of these two sites are independent of thylakoid membrane energization, since both in the dark and in the light the ratios of ATP/ADP tightly bound to the noncatalytic sites were very close. The difference in noncatalytic site affinity for ATP and ADP is shown to depend on the amount of delta subunit in a particular sample. Thylakoid membrane ATP synthase, with stoichiometric content of delta-subunit (one delta-subunit per CF1 molecule), showed the maximal difference in ADP and ATP affinities for the noncatalytic sites. For CF1, with substoichiometric delta subunit values, this difference was less, and after delta subunit removal it decreased still more.  相似文献   

15.
The F1-ATPase from chloroplasts (CF1) lacks catalytic capacity for ATP hydrolysis if ATP is not bound at noncatalytic sites. CF1 heat activated in the presence of ADP, with less than one ADP and no ATP at non-catalytic sites, shows a pronounced lag in the onset of ATP hydrolysis after exposure to 5-20 microM ATP. The onset of activity correlates well with the binding of ATP at the last two of the three noncatalytic sites. The dependence of activity on the presence of ATP at non-catalytic sites is shown at relatively low or high free Mg2+ concentrations, with or without bicarbonate as an activating anion, and when the binding of ATP at noncatalytic sites is slowed 3-4-fold by sulfate. The latent CF1 activated by dithiothreitol also requires ATP at noncatalytic sites for ATPase activity. A similar requirement by other F1-ATPases and by ATP synthases seems plausible.  相似文献   

16.
The suggestions from the author's group over the past 25 years for how steps in catalysis by ATP synthase occur are reviewed. Whether rapid ATP hydrolysis requires the binding of ATP to a second site (bi-site activation) or to a second and third site (tri-site activation) is considered. Present evidence is regarded as strongly favoring bi-site activation. Presence of nucleotides at three sites during rapid ATP hydrolysis can be largely accounted for by the retention of ADP formed and/or by the rebinding of ADP formed. Menz, Leslie and Walker ((2001) FEBS Lett., 494, 11-14) recently attained an X-ray structure of a partially closed enzyme form that binds ADP better than ATP. This accomplishment and other considerations form the base for a revised reaction sequence. Three types of catalytic sites are suggested, similar to those proposed before the X-ray data became available. During net ATP synthesis a partially closed site readily binds ADP and Pi but not ATP. At a closed site, tightly bound ADP and Pi are reversibly converted to tightly bound ATP. ATP is released from a partially closed site that can readily bind ATP or ADP. ATP hydrolysis when protonmotive force is low or lacking occurs simply by reversal of all steps with the opposite rotation of the subunit. Each type of site can exist in various conformations or forms as they are interconverted during a 120° rotation. The conformational changes with the ATP synthase, including the vital change when bound ADP and Pi are converted to bound ATP, are correlated with those that occur in enzyme catalysis in general, as illustrated by recent studies of Rose with fumarase. The B structure of Walker's group is regarded as an unlikely, or only quite transient, intermediate. Other X-ray structures are regarded as closely resembling but not identical with certain forms participating in catalysis. Correlation of the suggested reaction scheme with other present information is considered.  相似文献   

17.
The binding of ADP and ATP to noncatalytic sites of dithiothreitol-modified chloroplast ATP synthase was studied. Selective binding of nucleotides to noncatalytic sites was provided by preliminary light incubation of thylakoid membranes with [14C]ADP followed by its dissociation from catalytic sites during dark ATP hydrolysis stimulated by bisulfite ions (“cold chase”). Incorporation of labeled nucleotides increased with increasing light intensity. Concentration-dependent equilibrium between free and bound nucleotides was achieved within 2–10 min with the following characteristic parameters: the maximal value of nucleotide incorporation was 1.5 nmol/mg of chlorophyll, and the dissociation constant was 1.5 μM. The dependence of nucleotide incorporation on Mg2+ concentration was slight and changed insignificantly upon substituting Ca2+ for Mg2+. Dissociation of nucleotide from noncatalytic sites was illumination dependent. The dissociation kinetics suggested the existence of at least two nucleotide-binding sites with different dissociation rate constants. __________ Translated from Biokhimiya, Vol. 70, No. 11, 2005, pp. 1514–1520. Original Russian Text Copyright ? 2005 by Malyan.  相似文献   

18.
ATP synthases (FoF1-ATPases) of chloroplasts, mitochondria, and bacteria catalyze ATP synthesis or hydrolysis coupled with the transmembrane transfer of protons or sodium ions. Their activity is regulated through their reversible inactivation resulting from a decreased transmembrane potential difference. The inactivation is believed to conserve ATP previously synthesized under conditions of sufficient energy supply against unproductive hydrolysis. This review is focused on the mechanism of nucleotide-dependent regulation of the ATP synthase activity where the so-called noncatalytic nucleotide binding sites are involved. Properties of these sites varying upon free enzyme transition to its membrane-bound form, their dependence on membrane energization, and putative mechanisms of noncatalytic site-mediated regulation of the ATP synthase activity are discussed.  相似文献   

19.
In contrast to everted mitochondrial inner membrane vesicles and eubacterial plasma membrane vesicles, the ATPase activity of chloroplast ATP synthase in thylakoid membranes is extremely low. Several treatments of thylakoids that unmask ATPase activity are known. Illumination of thylakoids that contain reduced ATP synthase (reduced thylakoids) promotes the hydrolysis of ATP in the dark. Incubation of thylakoids with trypsin can also elicit higher rates of ATPase activity. In this paper the properties of the ATPase activity of the ATP synthase in thylakoids treated with trypsin are compared with those of the ATPase activity in reduced thylakoids. The trypsin-treated membranes have significant ATPase activity in the presence of Ca2+, whereas the Ca2+-ATPase activity of reduced thylakoids is very low. The Mg2+-ATPase activity of the trypsinized thylakoids was only partially inhibited by the uncouplers, at concentrations that fully inhibit the ATPase activity of reduced membranes. Incubation of reduced thylakoids with ADP in Tris buffer prior to assay abolishes Mg2+-ATPase activity. The Mg2+-ATPase activity of trypsin-treated thylakoids was unaffected by incubation with ADP. Trypsin-treated membranes can make ATP at rates that are 75–80% of those of untreated thylakoids. The Mg2+-ATPase activity of trypsin-treated thylakoids is coupled to inward proton translocation and 10 mM sulfite stimulates both proton uptake and ATP hydrolysis. It is concluded that cleavage of the γ subunit of the ATP synthase by trypsin prevents inhibition of ATPase activity by the ε subunit, but only partially overcomes inhibition by Mg2+ and ADP during assay.  相似文献   

20.
D. Bar-Zvi  N. Shavit 《BBA》1982,681(3):451-458
Inactivation of the chloroplast ATPase upon tight nucleotide binding was studied with several adenine nucleotide analogs. Compared with ADP, the other nucleoside diphosphates were less effective in the follwing order: IDP >?-ADP > 1-oxido-ADP > GDP. The nucleotide analogs compete with ADP for binding to the tight nucleotide-binding site(s) on the ATPase and also prevent further inactivation by ADP. AdoPP[NH]P also causes inactivation but has a lower affinity than ADP. [3H]GDP binds tightly to the ATPase, but the resulting enzyme-GDP complex is more readily dissociable than the enzyme-ADP complex. Although both nucleotides appear to bind to the same site, the catalytic and binding properties of the coresponding nucletide-enzyme complexes differ. Binding of GDP also decreases the rate and extent of the sontaneous decay of the activated enzyme. PPi decreases the rate of inacivation caused by ADP and also the level of tigthly buond ADP. Based on these results, we suggest that two different confomations of the ATPase exist which contain tigthly bound ADP. The active conformation is conveted to the inactive conformation in the absence of a continued supply of energy by illumination or ATP hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号