首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A mediator-less three-stage two-chamber microbial fuel cell (MFC) system was developed and operated continuously for more than 1.5 years to evaluate continuous power generation while treating artificial wastewater containing glucose (10 mM) concurrently. A stable power density of 28 W/m3 was attained with an anode hydraulic retention time of 4.5 h and phosphate buffer as the cathode electrolyte. An overall dissolved organic carbon removal ratio was about 85%, and coulombic efficiency was about 46% in this MFC system. We also analyzed the microbial community structure of anode biofilms in each MFC. Since the environment in each MFC was different due to passing on the products to the next MFC in series, the microbial community structure was different accordingly. The anode biofilm in the first MFC consisted mainly of bacteria belonging to the Gammaproteobacteria, identified as Aeromonas sp., while the Firmicutes dominated the anode biofilms in the second and third MFCs that were mainly fed with acetate. Cyclic voltammetric results supported the presence of a redox compound(s) associated with the anode biofilm matrix, rather than mobile (dissolved) forms, which could be responsible for the electron transfer to the anode. Scanning electron microscopy revealed that the anode biofilms were comprised of morphologically different cells that were firmly attached on the anode surface and interconnected each other with anchor-like filamentous appendages, which might support the results of cyclic voltammetry. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
The anode biofilm in a microbial fuel cell (MFC) is composed of diverse populations of bacteria, many of whose capacities for electricity generation are unknown. To identify functional populations in these exoelectrogenic communities, a culture-dependent approach based on dilution to extinction was combined with culture-independent community analysis. We analyzed the diversity and dynamics of microbial communities in single-chamber air-cathode MFCs with different anode surfaces using denaturing gradient gel electrophoresis based on the 16S rRNA gene. Phylogenetic analyses showed that the bacteria enriched in all reactors belonged primarily to five phylogenetic groups: Firmicutes, Actinobacteria, α-Proteobacteria, β-Proteobacteria, and γ-Proteobacteria. Dilution-to-extinction experiments further demonstrated that Comamonas denitrificans and Clostridium aminobutyricum were dominant members of the community. A pure culture isolated from an anode biofilm after dilution to extinction was identified as C. denitrificans DX-4 based on 16S rRNA sequence and physiological and biochemical characterizations. Strain DX-4 was unable to respire using hydrous Fe(III) oxide but produced 35 mW/m2 using acetate as the electron donor in an MFC. Power generation by the facultative C. denitrificans depends on oxygen and MFC configuration, suggesting that a switch of metabolic pathway occurs for extracellular electron transfer by this denitrifying bacterium.  相似文献   

3.
Power densities produced by microbial fuel cells (MFCs) in natural systems are changed by exposure to light through the enrichment of photosynthetic microorganisms. When MFCs with brush anodes were exposed to light (4000 lx), power densities increased by 8–10% for glucose-fed reactors, and 34% for acetate-fed reactors. Denaturing gradient gel electrophoresis (DGGE) profiles based on the 16S rRNA gene showed that exposure to high light levels changed the microbial communities on the anodes. Based on 16S rRNA gene clone libraries of light-exposed systems the anode communities using glucose were also significantly different than those fed acetate. Dominant bacteria that are known exoelectrogens were identified in the anode biofilm, including a purple nonsulfur (PNS) photosynthetic bacterium, Rhodopseudomonas palustris, and a dissimilatory iron-reducing bacterium, Geobacter sulfurreducens. Pure culture tests confirmed that PNS photosynthetic bacteria increased power production when exposed to high light intensities (4000 lx). These results demonstrate that power production and community composition are affected by light conditions as well as electron donors in single-chamber air-cathode MFCs.  相似文献   

4.
The relationship between anode microbial characteristics and electrochemical parameters in microbial fuel cells (MFCs) was analyzed by time-course sampling of parallel single-bottle MFCs operated under identical conditions. While voltage stabilized within 4 days, anode biofilms continued growing during the six-week operation. Viable cell density increased asymptotically, but membrane-compromised cells accumulated steadily from only 9% of total cells on day 3 to 52% at 6 weeks. Electrochemical performance followed the viable cell trend, with a positive correlation for power density and an inverse correlation for anode charge transfer resistance. The biofilm architecture shifted from rod-shaped, dispersed cells to more filamentous structures, with the continuous detection of Geobacter sulfurreducens-like 16S rRNA fragments throughout operation and the emergence of a community member related to a known phenazine-producing Pseudomonas species. A drop in cathode open circuit potential between weeks two and three suggested that uncontrolled biofilm growth on the cathode deleteriously affects system performance.  相似文献   

5.
The improvement in electricity generation during the enrichment process of a microbial consortium was analyzed using an air-cathode microbial fuel cell (MFC) repeatedly fed with acetate that was originally inoculated with sludge from an anaerobic digester. The anodic maximum current density produced by the anode biofilm increased from 0.12 mA/cm2 at day 28 to 1.12 mA/cm2 at day 105. However, the microbial cell density on the carbon cloth anode increased only three times throughout this same time period from 0.21 to 0.69 mg protein/cm2, indicating that the biocatalytic activity of the consortium was also enhanced. The microbial activity was calculated to have a per biomass anode-reducing rate of 374 μmol electron g protein−1 min−1 at day 28 and 1,002 μmol electron g protein−1 min−1 at day 105. A bacterial community analysis of the anode biofilm revealed that the dominant phylotype, which was closely related to the known exoelectrogenic bacterium, Geobacter sulfurreducens, showed an increase in abundance from 32% to 70% of the total microbial cells. Fluorescent in situ hybridization observation also showed the increase of Geobacter-like phylotypes from 53% to 72%. These results suggest that the improvement of microbial current generation in microbial fuel cells is a function of both microbial cell growth on the electrode and changes in the bacterial community highly dominated by a known exoelectrogenic bacterium during the enrichment process.  相似文献   

6.
Microbial fuel cell energy from an ocean cold seep   总被引:5,自引:0,他引:5  
Benthic microbial fuel cells are devices that generate modest levels of electrical power in seafloor environments by a mechanism analogous to the coupled biogeochemical reactions that transfer electrons from organic carbon through redox intermediates to oxygen. Two benthic microbial fuel cells were deployed at a deep-ocean cold seep within Monterey Canyon, California, and were monitored for 125 days. Their anodes consisted of single graphite rods that were placed within microbial mat patches of the seep, while the cathodes consisted of carbon-fibre/titanium wire brushes attached to graphite plates suspended ∼0.5 m above the sediment. Power records demonstrated a maximal sustained power density of 34 mW·m−2 of anode surface area, equating to 1100 mW m−2 of seafloor. Molecular phylogenetic analyses of microbial biofilms that formed on the electrode surfaces revealed changes in microbial community composition along the anode as a function of sediment depth and surrounding geochemistry. Near the sediment surface (20–29 cm depth), the anodic biofilm was dominated by micro-organisms closely related to Desulfuromonas acetoxidans. At horizons 46–55 and 70–76 cm below the sediment–water interface, clone libraries showed more diverse populations, with increasing representation of δ-proteobacteria such as Desulfocapsa and Syntrophus, as well as ɛ-proteobacteria. Genes from phylotypes related to Pseudomonas dominated the cathode clone library. These results confound ascribing a single electron transport role performed by only a few members of the microbial community to explain energy harvesting from marine sediments. In addition, the microbial fuel cells exhibited slowly decreasing current attributable to a combination of anode passivation and sulfide mass transport limitation. Electron micrographs of fuel cell anodes and laboratory experiments confirmed that sulfide oxidation products can build up on anode surfaces and impede electron transfer. Thus, while cold seeps have the potential to provide more power than neighbouring ocean sediments, the limits of mass transport as well as the proclivity for passivation must be considered when developing new benthic microbial fuel cell designs to meet specific power requirements.  相似文献   

7.
Microbial fuel cells (MFCs) can be built with layered electrode assemblies, where the anode, proton exchange membrane (PEM), and cathode are pressed into a single unit. We studied the performance and microbial community structure of MFCs with layered assemblies, addressing the effect of materials and oxygen crossover on the community structure. Four MFCs with layered assemblies were constructed using Nafion or Ultrex PEMs and a plain carbon cloth electrode or a cathode with an oxygen-resistant polytetrafluoroethylene diffusion layer. The MFC with Nafion PEM and cathode diffusion layer achieved the highest power density, 381 mW/m2 (20 W/m3). The rates of oxygen diffusion from cathode to anode were three times higher in the MFCs with plain cathodes compared to those with diffusion-layer cathodes. Microsensor studies revealed little accumulation of oxygen within the anode cloth. However, the abundance of bacteria known to use oxygen as an electron acceptor, but not known to have exoelectrogenic activity, was greater in MFCs with plain cathodes. The MFCs with diffusion-layer cathodes had high abundance of exoelectrogenic bacteria within the genus Geobacter. This work suggests that cathode materials can significantly influence oxygen crossover and the relative abundance of exoelectrogenic bacteria on the anode, while PEM materials have little influence on anode community structure. Our results show that oxygen crossover can significantly decrease the performance of air-cathode MFCs with layered assemblies, and therefore limiting crossover may be of particular importance for these types of MFCs.  相似文献   

8.
We report the electrochemical characterization and microbial community analysis of closed circuit microbial fuel cells (CC-MFCs) and open circuit (OC) cells continuously fed with propionate as substrate. Differences in power output between MFCs correlated with their polarization behavior, which is related to the maturation of the anodophilic communities. The microbial communities residing in the biofilm growing on the electrode, biofouled cation-exchange membrane and anodic chamber liquor of OC-and CC-MFCs were characterized by restriction fragment length polymorphism screening of 16S rRNA gene clone libraries. The results show that the CC-MFC anode was enriched in several microorganisms related to known electrochemically active and dissimilatory Fe(III) reducing bacteria, mostly from the Geobacter spp., to the detriment of Bacteroidetes abundant in the OC-MFC anode. The results also evidenced the lack of a specific pelagic community in the liquor sample. The biofilm growing on the cation-exchange membrane of the CC-MFC was found to be composed of a low-diversity community dominated by two microaerophilic species of the Achromobacter and Azovibrio genus.  相似文献   

9.
Long-term performance of a plant microbial fuel cell with Spartina anglica   总被引:2,自引:0,他引:2  
The plant microbial fuel cell is a sustainable and renewable way of electricity production. The plant is integrated in the anode of the microbial fuel cell which consists of a bed of graphite granules. In the anode, organic compounds deposited by plant roots are oxidized by electrochemically active bacteria. In this research, salt marsh species Spartina anglica generated current for up to 119 days in a plant microbial fuel cell. Maximum power production was 100 mW m−2 geometric anode area, highest reported power output for a plant microbial fuel cell. Cathode overpotential was the main potential loss in the period of oxygen reduction due to slow oxygen reduction kinetics at the cathode. Ferricyanide reduction improved the kinetics at the cathode and increased current generation with a maximum of 254%. In the period of ferricyanide reduction, the main potential loss was transport loss. This research shows potential application of microbial fuel cell technology in salt marshes for bio-energy production with the plant microbial fuel cell.  相似文献   

10.
A two-chamber MFC system was operated continuously for more than 500 days to evaluate effects of biofilm and chemical scale formation on the cathode electrode on power generation. A stable power density of 0.57 W/m2 was attained after 200 days operation. However, the power density decreased drastically to 0.2 W/m2 after the cathodic biofilm and chemical scale were removed. As the cathodic biofilm and chemical scale partially accumulated on the cathode, the power density gradually recovered with time. Microbial community structure of the cathodic biofilm was analyzed based on 16S rRNA clone libraries. The clones closely related to Xanthomonadaceae bacterium and Xanthomonas sp. in the Gammaproteobacteria subdivision were most frequently retrieved from the cathodic biofilm. Results of the SEM-EDX analysis revealed that the cation species (Na+ and Ca2+) were main constituents of chemical scale, indicating that these cations diffused from the anode chamber through the Nafion membrane. However, an excess accumulation of the biofilm and chemical scale on the cathode exhibited adverse effects on the power generation due to a decrease in the active cathode surface area and an increase in diffusion resistance for oxygen. Thus, it is important to properly control the formation of chemical scale and biofilm on the cathode during long-term operation.  相似文献   

11.
Phototrophic biofilms seem to be suitable candidates for tertiary wastewater treatment due to their high uptake capacity for nutrients and other pollutants, also taking into account the time and cost savings derived from easy procedures for biomass harvesting. Biomass accrual, structure, and physiology of biofilms affect the efficiency of nutrient removal by its microbial community. Here, we construct a biofilm consisting of a cyanobacterium Synechocystis sp. and the green alga Chlorococcum sp. and determine the effect of combined variations of irradiance and temperature on the biofilm structure and function. The two species were isolated from phototrophic biofilms naturally developing in an Italian wastewater treatment plant and grown in a microcosm designed for biofilm investigations. Phototrophic biomass accumulation, percent species composition, photosynthetic response and the amount and composition of capsular polysaccharides (CPS), including anionic residues, are reported. The results showed that biofilm development required relatively moderate irradiances (60 μmol photons m−2 s−1) below which development was arrested. Both light and temperature had a strong effect on the composition of each species to the biofilm. The CPS compositions also changed with temperature, light and species composition. The CPS of the green-algal-dominated biofilm had the higher uronic acid content indicating a potential to exploit green algae in the treatment of waste contaminated with heavy metals. Given the knowledge of the response of certain species to light and temperature combinations, it may be possible to construct biofilms of known species and CPS composition to use them for specific applications.  相似文献   

12.
In a bioelectrochemical system (BES), microbial community of anode biofilm is crucial to BES performance. In this study, the stratified pattern of community structure and activity of an anode-respiring biofilm in a BES fueled with brewery wastewater was investigated over time. The anode biofilm exhibited a superior performance in the removal of ethanol to that of an open-circuit system. The electrical current density reached a high level of 0.55mA/cm2 with a Coulombic efficiency of 71.4%, but decreased to 0.18mA/cm2 in the late stage of operation. A mature biofilm developed a more active outer layer covering a less active inner core, although the activities of the outer and inner layers of biofilm were similar in the early stage. More Geobacter spp., typical exoelectrogens, were enriched in the outer layer than in the inner layer of biofilm in the early stage, while more Geobacter spp. were distributed in the inner layer than in the outer layer in the late stage. The inactive and Geobacter-occupied inner layer of biofilm might be responsible for the decreased electricity generation from wastewater in the late stage of operation. This study provides better understanding of the effect of anode biofilm structure on BES performance.  相似文献   

13.
We compared the microbial community structures that developed in the biofilm anode of two microbial electrolysis cells fed with ethanol, a fermentable substrate—one where methanogenesis was allowed and another in which it was completely inhibited with 2‐bromoethane sulfonate. We observed a three‐way syntrophy among ethanol fermenters, acetate‐oxidizing anode‐respiring bacteria (ARB), and a H2 scavenger. When methanogenesis was allowed, H2‐oxidizing methanogens were the H2 scavengers, but when methanogenesis was inhibited, homo‐acetogens became a channel for electron flow from H2 to current through acetate. We established the presence of homo‐acetogens by two independent molecular techniques: 16S rRNA gene based pyrosequencing and a clone library from a highly conserved region in the functional gene encoding formyltetrahydrofolate synthetase in homo‐acetogens. Both methods documented the presence of the homo‐acetogenic genus, Acetobacterium, only with methanogenic inhibition. Pyrosequencing also showed a predominance of ethanol‐fermenting bacteria, primarily represented by the genus Pelobacter. The next most abundant group was a diverse community of ARB, and they were followed by H2‐scavenging syntrophic partners that were either H2‐oxidizing methanogens or homo‐acetogens when methanogenesis was suppressed. Thus, the community structure in the biofilm anode and suspension reflected the electron‐flow distribution and H2‐scavenging mechanism. Biotechnol. Bioeng. 2010;105: 69–78. © 2009 Wiley Periodicals, Inc.  相似文献   

14.
Through selective enrichment of atrazine-metabolizing microorganisms, a microbial community was selected from agricultural soil. Bacterial isolates, identified by their closest similarity with 16S rDNA sequences stored in NCBI GeneBank, belonged to the genera: Massilia, Stenotrophomonas, Klebsiella, Sphingomonas, Ochrobactrum, Arthrobacter, Microbacterium, Xanthomonas and Ornithinimicrobium. From these strains, only the first six used atrazine as nitrogen and carbon source. The microbial community attached to a non-porous support was evaluated for its atrazine biodegradation rate and removal efficiency under aerobic conditions in two types of packed-bed biofilm reactors fed with a mineral salt medium containing glucose plus atrazine, or atrazine as the sole carbon and nitrogen source. Removal efficiencies near 100% were obtained at loading rates up to 10 mg l−1 h−1. After long periods of continuous operation, the richness of microbial species in biofilm reactors diminished to only three bacterial strains; Stenotrophomonas sp., Ochrobactrum sp. and Arthrobacter sp. By PCR analysis of their DNA, the presence of atzABC genes codifying for the enzymes of the upper catabolic pathway of atrazine, was confirmed in the three strains. The gene atzD that encodes for the cyanuric acid amidohydrolase enzyme was detected only in Stenotrophomonas sp.  相似文献   

15.
We investigated the mechanism of Congo red degradation and bacterial diversity in a single-chambered microbial fuel cell (MFC) incorporating a microfiltration membrane and air–cathode. The MFC was operated continuously for more than 4 months using a mixture of Congo red and glucose as fuel. We demonstrated that the Congo red azo bonds were reduced at the anode to form aromatic amines. This is consistent with the known mechanism of anaerobic biodegradation of azo dyes. The MFC developed a less dense biofilm at the anode in the presence of Congo red compared to its absence indicating that Congo red degradation negatively affected biofilm formation. Denaturing gradient gel electrophoresis and direct 16S ribosomal DNA gene nucleotide sequencing revealed that the microbial communities differed depending on whether Congo red was present in the MFC. Geobacter-like species known to generate electricity were detected in the presence or absence of Congo red. In contrast, Azospirillum, Methylobacterium, Rhodobacter, Desulfovibrio, Trichococcus, and Bacteroides species were only detected in its presence. These species were most likely responsible for degrading Congo red.  相似文献   

16.
A multidimensional biofilm model is developed to simulate biofilm growth on the anode of a Microbial Fuel Cell (MFC). The biofilm is treated as a conductive material, and electrons produced during microbial growth are assumed to be transferred to the anode through a conductive biofilm matrix. Growth of Geobacter sulfurreducens is simulated using the Nernst–Monod kinetic model that was previously developed and later validated in experiments. By implementing a conduction-based biofilm model in two dimensions, we are able to explore the impact of anode density and arrangement on current production in a MFC.  相似文献   

17.
A glass bead biofilm reactor was operated using H2 as an electron donor to remove nitrate at 150 mg NO3–N l−1 to below detection level. The microbial community in the glass beads biofilm reactor was investigated by using denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. In DGGE analysis of the biofilm, five bands were dominant and indicated the presence of eight β-proteobacteria, one γ-proteobacteria and twelve clostridia. An unculturable Hydrogenophaga sp., which is a new genus of hydrogen-oxidizing bacterium was dominant in microbial community of the biofilm reactor.  相似文献   

18.
Construction of efficient performance of microbial fuel cells (MFCs) requires certain practical considerations. In the single chamber microbial fuel cell, there is no border between the anode and the cathode, thus the diffusion of the dissolved oxygen has a contrary effect on the anodic respiration and this leads to the inhibition of the direct electron transfer from the biofilm to the anodic surface. Here, a fed-batch single chambered microbial fuel cells are constructed with different distances 3 and 6?cm (anode- cathode spacing), while keeping the working volume is constant. The performance of each MFC is individually evaluated under the effects of vitamins & minerals with acetate as a fed load. The maximum open circuit potential during testing the 3 and 6?cm microbial fuel cells is about 946 and 791?mV respectively. By decreasing the distance between the anode and the cathode from 6 to 3?cm, the power density is decreased from 108.3?mW?m?2 to 24.5?mW?m?2. Thus, the short distance in membrane-less MFC weakened the cathode and inhibited the anodic respiration which affects the overall performance of the MFC efficiency. The system is displayed a maximum potential of 564 and 791?mV in absence & presence of vitamins respectively. Eventually, the overall functions of the acetate single chamber microbial fuel cell can be improved by the addition of vitamins & minerals and increasing the distance between the cathode and the anode.  相似文献   

19.
The functional basis for species sorting theory remains elusive, especially for microbial community assembly in deep‐sea environments. Using artificial surface‐based biofilm models, our recent work revealed taxonomic succession during biofilm development in a newly defined cold seep system, the Thuwal cold seeps II, which comprises a brine pool and the adjacent normal bottom water (NBW) to form a metacommunity via the potential immigration of organisms from one patch to another. Here, we designed an experiment to investigate the effects of environmental switching between the brine pool and the NBW on biofilm assembly, which could reflect environmental filtering effects during bacterial immigration to new environments. Analyses of 16S rRNA genes of 71 biofilm samples suggested that the microbial composition of biofilms established in new environments was determined by both the source community and the incubation conditions. Moreover, a comparison of 18 metagenomes provided evidence for biofilm community assembly that was based primarily on functional features rather than taxonomic identities; metal ion resistance and amino acid metabolism were the major species sorting determinants for the succession of biofilm communities. Genome binning and pathway reconstruction of two bacterial species (Marinobacter sp. and Oleispira sp.) further demonstrated metal ion resistance and amino acid metabolism as functional traits conferring the survival of habitat generalists in both the brine pool and NBW. The results of this study shed new light on microbial community assembly in special habitats and bridge a gap in species sorting theory.  相似文献   

20.
微生物电解池阳极生物膜功能菌群构建及群落特征分析   总被引:2,自引:0,他引:2  
【目的】微生物电解电池(MEC)是近几年快速发展的利用电极呼吸微生物快速降解有机质,通过较小的辅助外加电压直接生成氢气的新工艺。MEC能够有效地富集高效率电子传递功能菌群,是未来工艺放大和快速启动的关键。【方法】采用不同驯化方法构建MEC电极微生物菌群,通过单链构象多肽性技术(Single-strand conformation poly-morphism,SSCP)快速检测分析启动后电子传递功能菌群特征。【结果】阳极生物膜接种MEC可以实现2 d的快速启动,库仑效率达到20%以上,7 d获得稳定产氢,氢气转化率达到30%,能量回收效率达到90%以上。通过SSCP群落分析发现,采用微生物燃料电池阳极生物膜构建的MEC主要电子传递功能相关的菌群包括Pseudomonas sp.、Flavobacterium sp.、Ochrobactrum sp.,而直接由产氢MEC阳极生物膜新启动的MEC功能菌群组成丰度更大,包括电子传递效能更高的Desulfovibrio、Pseudomonas和Shewanella成为主要优势电子传递菌群。通过稳定产氢运行,MEC阳极生物膜优势菌群中存在的较大比例的厌氧菌与电子传递辅助菌对体系的快速稳定运行十分重要。【结论】与MFC阳极生物膜相比,MEC生物膜作为启动菌源能够获得多样性更丰富的电极功能菌群,其库仑效率和产氢效率更具优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号