首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The visual systems of all animals are used to provide information that can guide behaviour. In some cases insects demonstrate particularly impressive visually-guided behaviour and then we might reasonably ask how the low-resolution vision and limited neural resources of insects are tuned to particular behavioural strategies. Such questions are of interest to both biologists and to engineers seeking to emulate insect-level performance with lightweight hardware. One behaviour that insects share with many animals is the use of learnt visual information for navigation. Desert ants, in particular, are expert visual navigators. Across their foraging life, ants can learn long idiosyncratic foraging routes. What's more, these routes are learnt quickly and the visual cues that define them can be implemented for guidance independently of other social or personal information. Here we review the style of visual navigation in solitary foraging ants and consider the physiological mechanisms that underpin it. Our perspective is to consider that robust navigation comes from the optimal interaction between behavioural strategy, visual mechanisms and neural hardware. We consider each of these in turn, highlighting the value of ant-like mechanisms in biomimetic endeavours.  相似文献   

2.
There is a considerable interest in trying to understand how aphids find their host plants because they are a major cause of economic losses in agricultural and horticultural production systems. Indeed, the specific behavioural sequences during host finding by aphids are one of the main reasons for their prominent role as vectors of plant pathogenic viruses. This paper reviews the visual and olfactory stimuli involved in host‐finding behaviour of aphids, both basic and applied aspects are covered. Although controlling aphids by manipulation of visual and olfactory stimuli involved in host finding and host selection can be highly successful, as shown by research, most of these measures can still be further optimised and adoption in practice is currently limited. Research therefore needs to address some critical open questions, including (a) the effects of visual contrasts on aphid behaviour; (b) the specific responses of aphids to ultraviolet (UV) light during different stages in host finding; (c) the quantification of behavioural sequences in the field and (d) the response of aphid behaviour to plant diversity at varying spatial scales; further, (e) a much more comprehensive coverage of aphid taxa and aphid ecological groups is needed in host‐finding related research to uncover ecological principles underlying this critical behaviour.  相似文献   

3.
The visual systems of insects perform complex processing using remarkably compact neural circuits, yet these circuits are often studied using simplified stimuli which fail to reveal their behaviour in more complex visual environments. We address this issue by testing models of these circuits in real-world visual environments using a mobile robot. In this paper we focus on the lobula giant movement detector (LGMD) system of the locust which responds selectively to objects which approach the animal on a collision course and is thought to trigger escape behaviours. We show that a neural network model of the LGMD system shares the preference for approaching objects and detects obstacles over a range of speeds. Our results highlight aspects of the basic response properties of the biological system which have important implications for the behavioural role of the LGMD.  相似文献   

4.
The behavioural response of an insect to a fungal pathogen will have a direct effect on the efficacy of the fungus as a biological control agent. In this paper we describe two processes that have a significant effect on the interactions between insects and entomopathogenic fungi: (a) the ability of target insects to detect and avoid fungal pathogens and (b) the transmission of fungal pathogens between host insects. The behavioural interactions between insects and entomopathogenic fungi are described for a variety of fungal pathogens ranging from commercially available bio-pesticides to non-formulated naturally occurring pathogens. The artificial manipulation of insect behaviour using dissemination devices to contaminate insects with entomopathogenic fungi is then described. The implications of insect behaviour on the use of fungal pathogens as biological control agents are discussed.  相似文献   

5.
Understanding how animal personality (consistent between‐individual behavioural differences) arises has become a central topic in behavioural sciences. This endeavour is complicated by the fact that not only the mean behaviour of individuals (behavioural type) but also the strength of their reaction to environmental change (behavioural plasticity) varies consistently. Personality and cognitive abilities are linked, and we suggest that behavioural plasticity could also be explained by differences in brain size (a proxy for cognitive abilities), since accurate decisions are likely essential to make behavioural plasticity beneficial. We test this idea in guppies (Poecilia reticulata), artificially selected for large and small brain size, which show clear cognitive differences between selection lines. To test whether those lines differed in behavioural plasticity, we reared them in groups in structurally enriched environments and then placed adults individually into empty tanks, where we presented them daily with visual predator cues and monitored their behaviour for 20 days with video‐aided motion tracking. We found that individuals differed consistently in activity and risk‐taking, as well as in behavioural plasticity. In activity, only the large‐brained lines demonstrated habituation (increased activity) to the new environment, whereas in risk‐taking, we found sensitization (decreased risk‐taking) in both brain size lines. We conclude that brain size, potentially via increasing cognitive abilities, may increase behavioural plasticity, which in turn can improve habituation to novel environments. However, the effects seem to be behaviour‐specific. Our results suggest that brain size likely explains some of the variation in behavioural plasticity found at the intraspecific level.  相似文献   

6.
The behaviour of herbivorous insects is influenced by their nutritional state. Nutrition-induced behavioural changes are often interpreted as adaptive mechanisms for controlling nutrient intake; however, their influence on other life history traits has received far less attention. We investigated the effect of food quality and distribution on the behaviour and phase state of desert locusts, Schistocerca gregaria Forsk?l (Orthoptera, Acrididae), which change from the 'solitarious' to the 'gregarious' phase in response to population density. Phase change involves many morphological, physiological and behavioural changes. Solitarious insects are cryptic whereas gregarious locusts aggregate. Individual phase change is stimulated by mechanical contact with other locusts. A clumped resource distribution promotes change to the gregarious phase by increasing crowding and contact between individuals. In this study, we found that the effect of food distribution on locust phase depended on the nutritional quality of the food. We used three synthetic food treatments: near optimal, dilute and a choice of two unbalanced but complementary foods. Clumped resource distribution led to increased gregarization in the dilute and the complementary diet treatments. This effect was particularly pronounced on the complementary foods, owing to the interaction of crowding and locomotion. Gregarization was most pronounced in the dilute diet treatment, owing to increased activity. These diet-induced effects are explained in terms of behavioural changes in locomotion, quiescence and feeding that are consistent with what is known from earlier work on locust feeding behaviour and behavioural phase change. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

7.
Parasites commonly manipulate host behaviour, and among the most dramatic examples are diverse fungi that cause insects to die attached to leaves. This death-grip behaviour functions to place insects in an ideal location for spore dispersal from a dead body following host death. Fossil leaves record many aspects of insect behaviour (feeding, galls, leaf mining) but to date there are no known examples of behavioural manipulation. Here, we document, to our knowledge, the first example of the stereotypical death grip from 48 Ma leaves of Messel, Germany, indicating the antiquity of this behaviour. As well as probably being the first example of behavioural manipulation in the fossil record, these data support a biogeographical parallelism between mid Eocene northern Europe and recent southeast Asia.  相似文献   

8.
Foraging adults of phytophagous insects are attracted by host‐plant volatiles and supposedly repelled by volatiles from non‐host plants. In behavioural control of pest insects, chemicals derived from non‐host plants applied to crops are expected to repel searching adults and thereby reduce egg laying. How experience by searching adults of non‐host volatiles affects their subsequent searching and oviposition behaviour has been rarely tested. In laboratory experiments, we examined the effect of experience of a non‐host‐plant extract on the oviposition behaviour of the diamondback moth (DBM), Plutella xylostella, a specialist herbivore of cruciferous plants. Naive ovipositing DBM females were repelled by an extract of dried leaves of Chrysanthemum morifolium, a non‐host plant of DBM, but experienced females were not repelled. Instead they were attracted by host plants treated with the non‐host‐plant extract and laid a higher proportion of eggs on treated than on untreated host plants. Such behavioural changes induced by experience could lead to host‐plant range expansion in phytophagous insects and play an important role in determining outcome for pest management of some behavioural manipulation methods.  相似文献   

9.
Vast adaptability of insects is provided substantially by fast tining of physiological functioning of an organism to conform to the permanently changing environmental conditions. One of the mechanisms of plasticity in insects is modulation of performance of their sense organs by neurohormones. Activity of at least three out of four receptor cells located in cockroach pheromonesensitive sensilla is under influence of octopamine. Increase in firing rate of pheromone receptor cells and decrease in electroantennogram amplitude is accompanied by enhanced behavioural responses of male cockroaches to sex pheromone. The effect of octopamine on reception of a repellent (1,8-cineole) by an insect is reported for the first time. Simultaneous modulation of responses of receptor cells located in sex specific sensilla to semantically different odorants implies their cooperation in formation of insect's behaviour.  相似文献   

10.
Leg movements of stick insects (Carausius morosus) making turns towards visual targets are examined in detail, and a dynamic model of this behaviour is proposed. Initial results suggest that front legs shape most of the body trajectory, while the middle and hind legs just follow external forces (Rosano H, Webb B, in The control of turning in real and simulated stick insects, vol. 4095, pp 145–156, 2006). However, some limitations of this explanation and dissimilarities in the turning behaviour of the insect and the model were found. A second set of behavioural experiments was made by blocking front tarsi to further investigate the active role of the other legs for the control of turning. The results indicate that it is necessary to have different roles for each pair of legs to replicate insect behaviour. We demonstrate that the rear legs actively rotate the body while the middle legs move sideways tangentially to the hind inner leg. Furthermore, we show that on average the middle inner and hind outer leg contribute to turning while the middle outer leg and hind inner leg oppose body rotation. These behavioural results are incorporated into a 3D dynamic robot simulation. We show that the simulation can now replicate more precisely the turns made by the stick insect. This work was supported by CONACYT México and the European Commission under project FP6-2003-IST2-004690 SPARK.  相似文献   

11.
Simmonds MS 《Phytochemistry》2001,56(3):245-252
Jeffrey Harborne and colleagues have been responsible for collating the majority of data on the role of flavonoids in insect plant interactions. This article examines some of this information and assesses our knowledge about the role flavonoids play in insect feeding and oviposition behaviour. It is clear that insects can discriminate among flavonoids and that these compounds can modulate the feeding and oviposition behaviour of insects, but further work is required to understand the neural mechanisms associated with these behavioural responses. Despite the wealth of data about the diversity of flavonoids in plants, very few of these compounds have been tested against insects and their role in the evolution of host range in insect--plant interactions has yet to be determined.  相似文献   

12.
Over 97% of the 203 male medflies monitored in a lifetime study of their behaviour exhibited what we term supine behaviour (temporary upside-down orientation) starting an average of 16.1 days prior to their death (mean lifespan of 61.7 days). Supine onset increased the mortality risk by 39.5-fold and a unit increase in supine level increased mortality by 26.3%. The discovery that behavioural traits in insects can be used as biomarkers of their health and to predict their time to death has important implications regarding research on morbidity dynamics, behavioural neuroethology and gerontology, and the interpretation of longevity extension in model organisms.  相似文献   

13.
Animal personalities or behavioural syndromes are consistent and/or correlated behaviours across two or more situations within a population. Social insect biologists have measured consistent individual variation in behaviour within and across colonies for decades. The goal of this review is to illustrate the ways in which both the study of social insects and of behavioural syndromes has overlapped, and to highlight ways in which both fields can move forward through the synergy of knowledge from each. Here we, (i) review work to date on behavioural syndromes (though not always referred to as such) in social insects, and discuss mechanisms and fitness effects of maintaining individual behavioural variation within and between colonies; (ii) summarise approaches and principles from studies of behavioural syndromes, such as trade‐offs, feedback, and statistical methods developed specifically to study behavioural consistencies and correlations, and discuss how they might be applied specifically to the study of social insects; (iii) discuss how the study of social insects can enhance our understanding of behavioural syndromes—research in behavioural syndromes is beginning to explore the role of sociality in maintaining or developing behavioural types, and work on social insects can provide new insights in this area; and (iv) suggest future directions for study, with an emphasis on examining behavioural types at multiple levels of organisation (genes, individuals, colonies, or groups of individuals).  相似文献   

14.
果蝇Drosophila melanogaster Meigen是进行行为遗传学研究的极好材料。果蝇的雄性求偶行为已经被作为行为遗传学研究的模式。文章简要介绍近年来在遗传和分子水平上对果蝇性信息素和求偶行为的研究进展,尤其是突变体在果蝇行为遗传学研究中的应用。通过对果蝇求偶行为的分析,分别介绍果蝇的性信息素及视觉、听觉、嗅觉和味觉相关基因在果蝇求偶和交配行为过程中的作用。  相似文献   

15.
Many elements of the behavioural repertoire of ectothermic animals depend on body temperature. Under differing thermal conditions, behaviours in insects, reptiles and other terrestrial ectotherms may therefore vary widely, and in any given thermal regime there may be simple physical and physiological character differences between individuals that lead to a predictable variation of behaviour. Where mating behaviour patterns are involved, digferential fitness may result. Recent studies show that the interactions of physiology with behavioural ecology should be a fruitful area for future research.  相似文献   

16.
Throughout their lives, animals adapt their behaviour to environmental fluctuations and to their own requirements. In social insects, behavioural changes are often particularly conspicuous. For example, in many ant species, reproductive sexuals leave their maternal nests and engage in risky mating and dispersal activities. Female sexuals experience, during a short period of time, dramatic changes in terms of behaviour and environmental conditions. But because sexual activities of ants are not easily observed, few studies have quantified in detail how behaviour alters with maturation and mating. We studied how various behavioural traits of Leptothorax gredleri female sexuals, a species in which female sexuals attract males by ‘female calling’, change before and after mating. We tested the hypothesis that behavioural variation reflects the altered requirements of queens to adapt to a particular situation. To this end, we compared geotactic, phototactic and locomotor behaviour across a wide range of life stages from lightly coloured, unmated female sexuals to old, mated queens. The results showed that female sexuals of L. gredleri change conspicuously their geotactic, phototactic and locomotor behavioural traits over their life stages. Three different behavioural states were evident (1) from light to dark female sexuals, individuals have negative phototaxis and reduced locomotor activity; (2) mature female sexuals during the daily period of sexual activity have strong phototaxis, negative geotaxis and an important locomotor activity; and (3) freshly mated and old mated queens avoid light and decrease their locomotor activity. These sharp differences in behaviour between stages match the transition from the relative safety of the nest chamber to the adversary world outside the nest , and back.  相似文献   

17.
Abstract. Larval holometabolous insects show changes in behaviour (e.g. start of wandering and spinning) in specific periods of the moulting cycle in relation to definite ratios of juvenile hormone and moulting hormone (ecdysone). In hemimetabolous insects no such changes in behaviour are known. It should be investigated whether the cockroach Periplaneta americana shows changes in locomotor activity and in food and water consumption in relation to periods of ecdysone production during the last larval stage. Within a mean duration of the last larval stage of 30 days there were two periods of reduced locomotor activity: on day 9 and between days 13 and 17. From days 12–13 food consumption decreased by c . 40% up to the day 18. Water consumption decreased between days 9 and 18 by about 55%. Peaks of ecdysone production appeared after these changes of behaviour in each case. Therefore in larval Periplaneta ecdysone seems not to trigger these behavioural changes.  相似文献   

18.
The paper wasp Polistes dominulus is unique among the social insects in that nearly one-third of co-foundresses are completely unrelated to the dominant individual whose offspring they help to rear and yet reproductive skew is high. These unrelated subordinates stand to gain direct fitness through nest inheritance, raising the question of whether their behaviour is adaptively tailored towards maximizing inheritance prospects. Unusually, in this species, a wealth of theory and empirical data allows us to predict how unrelated subordinates should behave. Based on these predictions, here we compare helping in subordinates that are unrelated or related to the dominant wasp across an extensive range of field-based behavioural contexts. We find no differences in foraging effort, defense behaviour, aggression or inheritance rank between unrelated helpers and their related counterparts. Our study provides no evidence, across a number of behavioural scenarios, that the behaviour of unrelated subordinates is adaptively modified to promote direct fitness interests.  相似文献   

19.
The adequacy and utility of behavioural characters in phylogenetics is widely acknowledged, especially for stereotyped behaviours. However, the most common behaviours are not stereotyped, and these are usually seen as inappropriate or more difficult to analyze in a phylogenetic context. A few methods have been proposed to deal with such data, although they have never been tested on samples larger than six species, which limits their evolutionary interest. In the present study, we perform behavioural observations on 13 cockroach species and derive behavioural phylogenetic characters with the successive event‐pairing method. We combine these characters with morphological and molecular data (approximately 6800 bp) in a phylogenetic study of 41 species. We then reconstruct ancestral states of the behavioural data to study evolution of social behaviour in these insects with regard to their social systems (i.e. solitary, gregarious, and subsocial) and diversity of habitat choice. We report for the first time that nonstereotyped behavioural data are adequate for phylogenetic analyses: they are no more homoplastic than traditional data, and support several phylogenetic relationships that we discuss. From an evolutionary perspective, we show that the solitary species Thanatophyllum akinetum does not display original behavioural interactions, suggesting phylogenetic inertia of interactive behaviours despite a radical change in social structure. Conversely, the subsocial species Parasphaeria boleiriana shows original behavioural interactions, which could result from its peculiar social system or habitat. We conclude that phylogenetic approaches in studies of behaviour are useful for deciphering evolution of behaviour and discriminating between its different modalities, even for nonstereotyped characters. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 58–77.  相似文献   

20.
Computer-manipulated visual stimuli are a well-established tool to experimentally study animal behaviour. They provide the opportunity to manipulate single or combined visual stimuli selectively, while other potentially confounding variables remain constant. A wide array of different presentation methods of artificial stimuli has been used in recent research. Furthermore, a wide range of basic hardware and software has been used to conduct experiments. The outcomes of experimental trials using computer-manipulated visual stimuli differed among studies. Failing or contradictory results were mostly discussed in a behavioural and ecological context. However, the results sometimes may be basically flawed due to methodological traps in the experimental design. Based on characteristics and restrictions of technical standards, we discuss which kinds of computer stimuli and visual display units are available today and their suitability for experimental trials when studying animal behaviour. A computer-manipulated stimulus displayed by a certain visual display unit may be accurate to investigate behaviour in a specific species, if various preconditions are met. However, simply due to technical characteristics of the visual display unit, the set-up may be unsuitable for other test species. Thus, future research should critically apply the included technique, with respect to both the intended kind of stimulus and the species under investigation. If these preconditions are met, computer-manipulated stimuli provide a high degree of standardization and the potential to display visual signals without losing a crucial amount of information from the native data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号