首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polar bears (Ursus maritimus) prefer to live on Arctic sea ice but may swim between ice floes or between sea ice and land. Although anecdotal observations suggest that polar bears are capable of swimming long distances, no data have been available to describe in detail long distance swimming events or the physiological and reproductive consequences of such behavior. Between an initial capture in late August and a recapture in late October 2008, a radio-collared adult female polar bear in the Beaufort Sea made a continuous swim of 687 km over 9 days and then intermittently swam and walked on the sea ice surface an additional 1,800 km. Measures of movement rate, hourly activity, and subcutaneous and external temperature revealed distinct profiles of swimming and walking. Between captures, this polar bear lost 22% of her body mass and her yearling cub. The extraordinary long distance swimming ability of polar bears, which we confirm here, may help them cope with reduced Arctic sea ice. Our observation, however, indicates that long distance swimming in Arctic waters, and travel over deep water pack ice, may result in high energetic costs and compromise reproductive fitness.  相似文献   

2.
We investigated the relationship between sea ice conditions, food availability, and the fall distribution of polar bears (Ursus maritimus) in terrestrial habitats of the Southern Beaufort Sea via weekly aerial surveys in 2000–2005. Aerial surveys were conducted weekly during September and October along the Southern Beaufort Sea coastline and barrier islands between Barrow and the Canadian border to determine polar bear density on land. The number of bears on land both within and among years increased when sea-ice was retreated furthest from the shore. However, spatial distribution also appeared to be related to the availability of subsistence-harvested bowhead whale (Balaena mysticetus) carcasses and the density of ringed seals (Phoca hispida) in offshore waters. Our results suggest that long-term reductions in sea-ice could result in an increasing proportion of the Southern Beaufort Sea polar bear population coming on land during the fall open-water period and an increase in the amount of time individual bears spend on land.  相似文献   

3.
Polar bears (Ursus maritimus) in the northern Alaska region den in coastal areas and on offshore drifting ice. We evaluated changes in the distribution of polar bear maternal dens between 1985 and 2005, using satellite telemetry. We determined the distribution of maternal dens occupied by 89 satellite collared female polar bears between 137°W and 167°W longitude. The proportion of dens on pack ice declined from 62% in 1985–1994 to 37% in 1998–2004 (P = 0.044) and among pack ice dens fewer occurred in the western Beaufort Sea after 1998. We evaluated whether hunting, attraction to bowhead whale remains, or changes in sea ice could explain changes in den distribution. We concluded that denning distribution changed in response to reductions in stable old ice, increases in unconsolidated ice, and lengthening of the melt season. In consort, these changes have likely reduced the availability and quality of pack ice denning habitat. Further declines in sea ice availability are predicted. Therefore, we expect the proportion of polar bears denning in coastal areas will continue to increase, until such time as the autumn ice retreats far enough from shore that it precludes offshore pregnant females from reaching the Alaska coast in advance of denning.  相似文献   

4.
The movements of two adult female polar bears ( Ursus maritimus) in East Greenland and the Greenland Sea area were studied by use of satellite telemetry between the fall of 1994 and the summer of 1998. One female was tracked for 621 days, the other for 1,415 days. During this time the females used maternity dens on land. If denning periods on land were excluded, the two females used between 73% and 100% of the tracking time offshore where they were able to navigate in the dynamic pack ice and counteract the fast southward movement of the ice (up to 30 km/h) in the East Greenland Current. Mean monthly movement rates varied between 0.32 and 0.76km/h. Both bears had very large home ranges (242,000 and 468,000 km 2) within the dynamic pack ice of the Greenland Sea. The facts that the bears made extensive use of the offshore sea ice and that there is a marked reduction of the Greenland Sea ice call for a closer monitoring of the effects of this change on the East Greenland polar bear population.  相似文献   

5.
Polar bear (Ursus maritimus) subpopulations in several areas with seasonal sea ice regimes have shown declines in body condition, reproductive rates, or abundance as a result of declining sea ice habitat. In the Foxe Basin region of Nunavut, Canada, the size of the polar bear subpopulation has remained largely stable over the past 20 years, despite concurrent declines in sea ice habitat. We used fatty acid analysis to examine polar bear feeding habits in Foxe Basin and thus potentially identify ecological factors contributing to population stability. Adipose tissue samples were collected from 103 polar bears harvested during 2010–2012. Polar bear diet composition varied spatially within the region with ringed seal (Pusa hispida) comprising the primary prey in northern and southern Foxe Basin, whereas polar bears in Hudson Strait consumed equal proportions of ringed seal and harp seal (Pagophilus groenlandicus). Walrus (Odobenus rosmarus) consumption was highest in northern Foxe Basin, a trend driven by the ability of adult male bears to capture large‐bodied prey. Importantly, bowhead whale (Balaena mysticetus) contributed to polar bear diets in all areas and all age and sex classes. Bowhead carcasses resulting from killer whale (Orcinus orca) predation and subsistence harvest potentially provide an important supplementary food source for polar bears during the ice‐free period. Our results suggest that the increasing abundance of killer whales and bowhead whales in the region could be indirectly contributing to improved polar bear foraging success despite declining sea ice habitat. However, this indirect interaction between top predators may be temporary if continued sea ice declines eventually severely limit on‐ice feeding opportunities for polar bears.  相似文献   

6.
The principal habitat of polar bears Ursus maritimus is sea ice where they hunt seals. Much of the sea ice habitat is scattered or with leads of open water. Adults are good swimmers. They are well adapted to cold water, while small cubs do not yet have fat layer sufficient to avoid chilling if swimming in icy water for any prolonged period of time. An important question is thus how female mothers and their cubs may behave to avoid that cubs get chilled, but at the same time making it possible for the families to hunt is those areas. We describe an observation of a polar bear cub on its mother’s back while the mother was swimming among ice floes in Svalbard, Norwegian Arctic. Similar observations are to our knowledge not earlier described in the scientific literature. We point out that this behaviour minimize exposure to cold water and hence significantly may reduce chilling of the cub. It may also be a way for the mother to transfer cubs not yet able or willing to swim. The behaviour may be necessary to allow the families to get around in areas of sea ice with many open leads.  相似文献   

7.
ABSTRACT Some of the most pronounced ecological responses to climatic warming are expected to occur in polar marine regions, where temperature increases have been the greatest and sea ice provides a sensitive mechanism by which climatic conditions affect sympagic (i.e., with ice) species. Population-level effects of climatic change, however, remain difficult to quantify. We used a flexible extension of Cormack-Jolly-Seber capture-recapture models to estimate population size and survival for polar bears (Ursus maritimus), one of the most ice-dependent of Arctic marine mammals. We analyzed data for polar bears captured from 1984 to 2004 along the western coast of Hudson Bay and in the community of Churchill, Manitoba, Canada. The Western Hudson Bay polar bear population declined from 1,194 (95% CI = 1,020-1,368) in 1987 to 935 (95% CI = 794-1,076) in 2004. Total apparent survival of prime-adult polar bears (5–19 yr) was stable for females (0.93; 95% CI = 0.91-0.94) and males (0.90; 95% CI = 0.88-0.91). Survival of juvenile, subadult, and senescent-adult polar bears was correlated with spring sea ice breakup date, which was variable among years and occurred approximately 3 weeks earlier in 2004 than in 1984. We propose that this correlation provides evidence for a causal association between earlier sea ice breakup (due to climatic warming) and decreased polar bear survival. It may also explain why Churchill, like other communities along the western coast of Hudson Bay, has experienced an increase in human-polar bear interactions in recent years. Earlier sea ice breakup may have resulted in a larger number of nutritionally stressed polar bears, which are encroaching on human habitations in search of supplemental food. Because western Hudson Bay is near the southern limit of the species' range, our findings may foreshadow the demographic responses and management challenges that more northerly polar bear populations will experience if climatic warming in the Arctic continues as projected.  相似文献   

8.
ARGOS satellite telemetry and Global Location Sensors (geolocators) were used to identify the moult locations and the winter foraging dispersal of Adélie penguins after they left their breeding colonies on Signy Island in the South Orkney Islands. Animals were tracked during the period December 2004 to October 2005. All birds displayed a similar pattern of migratory behaviour, remaining away from colonies for approximately 9 months, at distances of up to 2,235 km. Moult locations were within the pack ice. Mean daily travel speeds to the moult locations were significantly faster when moving through open water than through pack ice. Moult occurred during February/March within a narrow latitudinal range (65–71°S), at a mean distance of 126 km from the ice edge; the mean duration of individual moult was c. 18.6 days. After moult, penguins spent the subsequent winter months moving north or north-eastward within the expanding winter pack ice, at a mean distance of 216 km from the ice edge, and in areas with ice cover >80%. The penguins returned to the vicinity of their colony between September 26 and October 22, 2005. This dependence of Adélie penguins on sea ice habitat suggests that any further reductions in sea ice extent in the Weddell Sea region would potentially have important impacts on the population processes of this pagophilic species.  相似文献   

9.
Northern polar regions have warmed more than other parts of the globe potentially amplifying the effects of climate change on biological communities. Ice-free seasons are becoming longer in many areas, which has reduced the time available to polar bears (Ursus maritimus) to hunt for seals and hampered bears’ ability to meet their energetic demands. In this study, we examined polar bears’ use of an ancillary prey resource, eggs of colonial nesting birds, in relation to diminishing sea ice coverage in a low latitude region of the Canadian Arctic. Long-term monitoring reveals that bear incursions onto common eider (Somateria mollissima) and thick-billed murre (Uria lomvia) nesting colonies have increased greater than sevenfold since the 1980s and that there is an inverse correlation between ice season length and bear presence. In surveys encompassing more than 1000 km of coastline during years of record low ice coverage (2010–2012), we encountered bears or bear sign on 34% of eider colonies and estimated greater egg loss as a consequence of depredation by bears than by more customary nest predators, such as foxes and gulls. Our findings demonstrate how changes in abiotic conditions caused by climate change have altered predator–prey dynamics and are leading to cascading ecological impacts in Arctic ecosystems.  相似文献   

10.
The expense of traditional capture‐recapture methods, interest in less invasive survey methods, and the circumpolar decline of polar bear (Ursus maritimus) habitat require evaluation of alternative methods for monitoring polar bear populations. Aerial line transect distance sampling (DS) surveys are thought to be a promising monitoring tool. However, low densities and few observations during a survey can result in low precision, and logistical constraints such as heavy ice and fuel and safety limitations may restrict survey coverage. We used simulations to investigate the accuracy and precision of, DS for estimating polar bear abundance in sea ice habitats, using the Chukchi Sea subpopulation as an example. Simulation parameters were informed from a recent pilot survey. Predictions from a resource selection model were used for stratification, and we compared two ratio estimators to account for areas that cannot be sampled. The ratio estimator using predictions of resource selection by polar bears allowed for extrapolation beyond sampled areas and provided results with low bias and CVs ranging from 21% to 36% when abundance was >1,000. These techniques could be applied to other DS surveys to allocate effort and potentially extrapolate estimates to include portions of the landscape that are logistically impossible to survey.  相似文献   

11.
The extent, thickness and age of Arctic sea ice has dramatically declined since the late 1990s, and these trends are predicted to continue. Exploring the habitat use of sea‐ice‐dependent species can help us understand which resources they use and how their distribution responds to a changing environment. The goal of this study was to develop predictive models of the habitat use of an Arctic apex predator. Polar bear Ursus maritimus habitat use in the Barents Sea subpopulation was modelled with seasonal resource selection functions (RSFs) using satellite‐linked telemetry data from 294 collars deployed on female polar bears between 1991 and 2015. Polar bears selected habitat in the Marginal Ice Zone, with a preference for intermediate sea ice concentrations (40–80%). They spent most time in areas with relatively short travel distances to 15 or 75% ice concentration, and during spring and autumn they exhibited a preference for sea ice areas over the continental shelf or over shallower bathymetry). Predictions of the distribution of polar bears in the Barents Sea area can be made for specific sea ice scenarios using these models. Two such predictive distribution maps based on the autumn seasonal model were made and validated against two independent polar bear survey datasets collected in August 2004 and August 2015. The distribution of optimal polar bear habitat has shifted strongly northwards in all seasons of the year during the 25 yr study period.  相似文献   

12.
M. G. Dyck  S. Romberg 《Polar Biology》2007,30(12):1625-1628
Polar bears, Ursus maritimus, throughout their range, are nutritionally dependent on ringed (Phoca hispida) and bearded seals (Erignathus barbatus), which are predominantly caught on the sea ice. Other marine prey species are caught and consumed, but less frequently. As the annual sea ice retreats, polar bears throughout their range are forced ashore, where they mostly live off their stored adipose tissue. However, while land-bound they have been observed catching birds and terrestrial mammals. Although polar bears evolved from brown bears (U. arctos), direct observations of polar bears diving for and catching fish have not been reported. Here, we document observations of a young male polar bear catching Arctic charr (Salvelinus alpinus) and Fourhorn sculpin (Myoxocephalus quadricornis) by diving in Creswell Bay, Nunavut. We recorded six search bouts, where six fish were caught during dives, which were preceded by a snorkel. The average dive and snorkel length was (mean ± SD) 13 ± 5 and 6 ± 2 s, respectively.  相似文献   

13.
Large-scale industrial activities can have negative effects on wildlife populations. Some of these effects, however, could be reduced with effective planning prior to development. The Coastal Plain of the Arctic National Wildlife Refuge, in northeastern Alaska, USA, is an important maternal denning area for polar bears (Ursus maritimus). Recent legislation has opened the area for potential oil and gas development. As a result, there is interest in conducting winter seismic surveys across the area that could disturb denning female polar bears and lead to decreased cub survival. We sought to demonstrate how different seismic survey designs, with and without aerial den detection surveys, could affect the level of potential effect on denning polar bears during spring (Feb–Apr). We developed 5 hypothetical seismic survey designs for a portion of the Coastal Plain ranging from no spatial or temporal restrictions on activities to explicit consideration of when and where operations can occur. We evaluated how many dens might be disturbed by seismic surveys and the average distance activity came within simulated polar bear dens. Survey design had a large effect on the estimated number of dens that could be disturbed; the scenario with the highest spatial and temporal specificity reduced the number of dens disturbed by >90% compared to the scenario with no restrictions on when and where activity could occur. The use of an aerial den detection survey prior to seismic activity further reduced the number of dens disturbed by 68% across all scenarios. The scenario with the highest spatial and temporal specificity always had the lowest level of disturbance for all scenarios with and without the aerial survey included. Our study suggests that large reductions in the probability of disturbance can occur through careful planning on the timing and distribution of proposed activities even when surveys are planned in areas with a high density of polar bear dens. Published 2019. This article is a U.S. Government work and is in the public domain in the USA. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

14.
Human–bear interactions near the town of Churchill, Manitoba occur annually because the Western Hudson Bay polar bear population spends 4–5 months on-land each year when the sea ice melts completely. Significant changes have occurred in the Hudson Bay ecosystem and in the bear population as a result of climate warming; however, how these changes may have influenced human–bear interactions near Churchill is unclear. This study examined the temporal and spatial patterns of 1,487 problem bears captured in the Churchill area from 1970 to 2004. We also examined the relationship between problem bears and environmental variables as well as the Nunavut harvest. The number of individual problem bears caught near Churchill varied from 10 to 90 individuals per year and increased over time. Subadult males comprised 39%, subadult females 23%, adult males 18%, females with young 14%, and solitary females 6% of captures. Bears that became problem individuals were in closer proximity to the Churchill area. Nutritional stress and a northward shift in the distribution of the bears that spend the summer on-land in northeastern Manitoba may account for the increase in problem bear numbers. The date of sea ice freeze-up, which is getting progressively later, was the best predictor explaining the annual variation in the occurrence of problem bears. These results provide an understanding of how a warming climate may directly impact polar bear behaviour. This information may allow wildlife managers to predict relative levels of human–bear interactions and thereby implement effective management strategies to improve human safety and the conservation of polar bears.  相似文献   

15.
Ringed seal (Pusa hispida) breeding distribution has been extensively studied across near-shore habitats, but has received limited attention at a seascape scale due to the difficulty in accessing offshore sea ice environments. Employing highly visible predation attempts by polar bears (Ursus maritimus) on ringed seals in subnivean lairs observed by helicopter, the spatial relationship between predatory behaviour and ringed seal breeding habitat was examined. Resource selection functions were used to determine the relative probability of predation attempts on ringed seals in lairs as a function of habitat during a period of low ringed seal natality (2004–2006). Ringed seal pup kill locations were compared between years of low (2003–2006) and high (2007–2011) natality to assess the effect of reproductive output on habitat use. During years of low natality, polar bear hunting attempts were more likely in near-shore fast ice, and pup kills were observed predominately in fast ice (fast = 65 %, pack = 29 %, P = 0.002) at a median distance of 36 km from shore. In years of high natality, pup kills were observed farther from shore (median = 46 km, P = 0.03), and there was no difference in the proportion of observations in fast ice and pack ice (fast = 43 %, pack = 52 %, P = 0.29). These results suggest that the facultative use of adjacent offshore pack ice by breeding ringed seals may be influenced by natality. This study illustrates how documenting the behaviour of a predator can facilitate insight into the distribution of a cryptic prey.  相似文献   

16.
17.
We determined the body composition from the carcasses of three 3- to 4-months-old polar bear cubs found dead at Svalbard, Norway. Two of the cubs were killed by a male bear at the den and one cub died from starvation. These three carcasses weighed 70-77% of total body mass of cubs. The ash and protein content of the three carcasses were similar but the starving cub had higher water content and lower fat content than the two killed cubs. The fat content varied from 1.3% (starving cub) to 12.9% while the content of water and fat was similar (about 76%) in the three cubs. More data on the body composition of polar bear cubs at time of emergence from the den are needed to understand the breeding ecology and reproductive energetics of female polar bears.  相似文献   

18.
The feeding habits of harp seals (Phoca groenlandica) in the Barents Sea were examined in studies conducted during June 1991, September 1990 and 1991, and October 1992. Analyses of stomach and intestinal contents were carried out and concurrent estimates of prey abundance were made using trawl gear. Harp seals appeared to feed at low intensity in the pack ice belt during the first half of June. There was little potential prey in the water column, but prawns (Pandalus borealis), capelin (Mallotus villosus) and polar cod (Boreogadus saida) were abundant close to the bottom. In September, the seals sampled in the northern pack ice areas of the Barents Sea fed on the pelagic amphipod Parathemisto libellula, krill (Thysanoessa spp.), prawns and, to a lesser extent, on fish species such as polar cod, sculpins (Cottidae) and snailfish (Liparidae). Trawling revealed that large quantities of Parathemisto libellala were present in the upper layers of the water column. Fish, mainly capelin and polar cod, were less abundant and occurred in deeper waters. In mid-October, the diet of seals in the northern Barents Sea consisted mainly of amphipods (Parathemisto sp.). Later in October, when increasing pack ice cover forced the harp seals to move south, the diet seemed to change from amphipods to fish prey, predominantly capelin and polar cod.  相似文献   

19.
Recent reductions in thickness and extent have increased drift rates of Arctic sea ice. Increased ice drift could significantly affect the movements and the energy balance of polar bears (Ursus maritimus) which forage, nearly exclusively, on this substrate. We used radio‐tracking and ice drift data to quantify the influence of increased drift on bear movements, and we modeled the consequences for energy demands of adult females in the Beaufort and Chukchi seas during two periods with different sea ice characteristics. Westward and northward drift of the sea ice used by polar bears in both regions increased between 1987–1998 and 1999–2013. To remain within their home ranges, polar bears responded to the higher westward ice drift with greater eastward movements, while their movements north in the spring and south in fall were frequently aided by ice motion. To compensate for more rapid westward ice drift in recent years, polar bears covered greater daily distances either by increasing their time spent active (7.6%–9.6%) or by increasing their travel speed (8.5%–8.9%). This increased their calculated annual energy expenditure by 1.8%–3.6% (depending on region and reproductive status), a cost that could be met by capturing an additional 1–3 seals/year. Polar bears selected similar habitats in both periods, indicating that faster drift did not alter habitat preferences. Compounding reduced foraging opportunities that result from habitat loss; changes in ice drift, and associated activity increases, likely exacerbate the physiological stress experienced by polar bears in a warming Arctic.  相似文献   

20.
The distribution and abundance of spotted seals (Phoca largha) and ribbon seals (Phoca fasciata) were assessed in March and April, 2000, by aerial line-transect surveys along the southern edge of the pack ice off the coast of Hokkaido (southern Sea of Okhotsk), Japan. Five hundred and seventeen spotted seals and 107 ribbon seals were found on the total 2944 km survey line. Total abundance was estimated to be 13 653 spotted (95% CI = 6167–30 252) and 2260 ribbon seals (95% CI = 783–6607) in March, and 6545 spotted (95% CI = 3284–815 644) and 3134 ribbon seals (95% CI = 1247–17 802 512) in April. The pack ice area off Hokkaido had higher densities (0.54 seals km–2 and 0.58 seals km–2 in March and April, respectively) of spotted seals than those reported in eastern Sakhalin, whereas densities (0.09 seals km–2 in March and 0.28 seals km–2 in April) of ribbon seals were lower than those in eastern Sakhalin. The large number of spotted seal pups suggests that the study area is an important breeding center. A greater number of female spotted seals with pups tended to be found in the center of larger and rougher floes than in other categories, and they were more abundant in stable pack ice areas. Observations of ribbon seals were limited because the survey period preceded the peak of pupping season. Ribbon seal surveys were also hampered by the inability to fly over the main breeding area between the Shiretoko Peninsula and Kunashiri Island.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号