首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background information. The translational inhibitor protein 4E‐BP1 [eIF4E (eukaryotic initiation factor 4E)‐binding protein 1] regulates the availability of polypeptide chain initiation factor eIF4E for protein synthesis. Initiation factor eIF4E binds the 5′ cap structure present on all cellular mRNAs. Its ability to associate with initiation factors eIF4G and eIF4A, forming the eIF4F complex, brings the mRNA to the 43S complex during the initiation of translation. Binding of eIF4E to eIF4G is inhibited in a competitive manner by 4E‐BP1. Phosphorylation of 4E‐BP1 decreases the affinity of this protein for eIF4E, thus favouring the binding of eIF4G and enhancing translation. We have previously shown that induction or activation of the tumour suppressor protein p53 rapidly leads to 4E‐BP1 dephosphorylation, resulting in sequestration of eIF4E, decreased formation of the eIF4F complex and inhibition of protein synthesis. Results. We now report that activation of p53 also results in modification of 4E‐BP1 to a truncated form. Unlike full‐length 4E‐BP1, which is reversibly phosphorylated at multiple sites, the truncated protein is almost completely unphosphorylated. Moreover, the latter interacts with eIF4E in preference to full‐length 4E‐BP1. Inhibitor studies indicate that the p53‐induced cleavage of 4E‐BP1 is mediated by the proteasome and is blocked by conditions that inhibit the dephosphorylation of full‐length 4E‐BP1. Measurements of the turnover of 4E‐BP1 indicate that the truncated form is much more stable than the full‐length protein. Conclusions. The results suggest a model in which proteasome activity gives rise to a stable, hypophosphorylated and truncated form of 4E‐BP1, which may exert a long‐term inhibitory effect on the availability of eIF4E, thus contributing to the inhibition of protein synthesis and the growth‐inhibitory and pro‐apoptotic effects of p53.  相似文献   

2.
Recently, we identified an N‐terminally truncated form of the mRNA cap binding protein eIF4E in the porcine luminal epithelium during implantation. EIF4E truncation is accompanied by degradation of the eIF4E‐repressor protein 4E‐BP1. In this study, we investigated whether or not the other members of the eIF4E‐repressor family, namely 4E‐BP2 and 4E‐BP3, were also modified during early pregnancy. We did not detect 4E‐BP3 in the uterine tissue; however, 4E‐BP2 emerged in one or two stable fragments on pregnancy day 15. 4E‐BP2 truncation most likely occurs at the N‐terminus, and this calcium‐stimulated processing depends on progesterone and estradiol. The activities targeting eIF4E, 4E‐BP1, and 4E‐BP2 were found in different fractions after anionic exchange chromatography, indicating the action of different proteases. Detailed protein interaction studies with immobilized anti‐eIF4E and m7GTP‐Sepharose showed a differential binding of the 4E‐BP2 isoforms to the eIF4E variants and to the cap structure. In general, truncation of eIF4E reduces the inhibitory impact of 4E‐BP2, whereas truncation of 4E‐BP2 restores repression by binding the prototype eIF4E. In this context, we suggest long‐term translational repression by the truncated 4E‐BP2 is affected by the loss of the RAIP motif located at the N‐terminus, which is indispensable for phosphorylation and deactivation of the molecule. In conclusion, we propose a tightly balanced regulation of the truncation of the cap‐binding complex component eIF4F and degradation of 4E‐BP1 and/or truncation of 4E‐BP2 that together ensures correct translational control during the dynamic process of conceptus implantation. Mol. Reprod. Dev. 79: 767–776, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
To clarify the higher eukaryotic initiation factor 4E (eIF4E) binding selectivity of 4E‐binding protein 2 (4E‐BP2) than of 4E‐BP1, as determined by Trp fluorescence analysis, the crystal structure of the eIF4E binding region of 4E‐BP2 in complex with m7GTP‐bound human eIF4E has been determined by X‐ray diffraction analysis and compared with that of 4E‐BP1. The crystal structure revealed that the Pro47‐Ser65 moiety of 4E‐BP2 adopts a L ‐shaped conformation involving extended and α‐helical structures and extends over the N‐terminal loop and two different helix regions of eIF4E through hydrogen bonds, and electrostatic and hydrophobic interactions; these features were similarly observed for 4E‐BP1. Although the pattern of the overall interaction of 4E‐BP2 with eIF4E was similar to that of 4E‐BP1, a notable difference was observed for the 60–63 sequence in relation to the conformation and binding selectivity of the 4E‐BP isoform, i.e. Met‐Glu‐Cys‐Arg for 4E‐BP1 and Leu‐Asp‐Arg‐Arg for 4E‐BP2. In this paper, we report that the structural scaffold of the eIF4E binding preference for 4E‐BP2 over 4E‐BP1 is based on the stacking of the Arg63 planar side chain on the Trp73 indole ring of eIF4E and the construction of a compact hydrophobic space around the Trp73 indole ring by the Leu59‐Leu60 sequence of 4E‐BP2. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
The mRNA's cap-binding protein eukaryotic translation initiation factor (eIF)4E is a major target for the regulation of translation initiation. eIF4E activity is controlled by a family of translation inhibitors, the eIF4E-binding proteins (4E-BPs). We have previously shown that a rapid dissociation of 4E-BP from eIF4E is related with the dramatic rise in protein synthesis that occurs following sea urchin fertilization. Here, we demonstrate that 4E-BP is destroyed shortly following fertilization and that 4E-BP degradation is sensitive to rapamycin, suggesting that proteolysis could be a novel means of regulating 4E-BP function. We also show that eIF4E/4E-BP dissociation following fertilization is sensitive to rapamycin. Furthermore, while rapamycin modestly affects global translation rates, the drug strongly inhibits cyclin B de novo synthesis and, consequently, precludes the completion of the first mitotic cleavage. These results demonstrate that, following sea urchin fertilization, cyclin B translation, and thus the onset of mitosis, are regulated by a rapamycin-sensitive pathway. These processes are effected at least in part through eIF4E/4E-BP complex dissociation and 4E-BP degradation.  相似文献   

5.
The eukaryotic translation initiation factor 4E (eIF4E) controls gene expression through its effects on mRNA export and cap‐dependent translation, both of which contribute to its oncogenic potential. In contrast to its translation function, the mRNA export function of eIF4E is poorly understood. Using an RNP isolation/mass spectrometry approach, we identified candidate cofactors of eIF4E mRNA export including LRPPRC. This protein associates with mRNAs containing the eIF4E‐sensitivity element (4E‐SE), and its overexpression alters the nuclear export of several eIF4E‐sensitive mRNAs. LRPPRC‐mediated alteration of eIF4E's mRNA export function requires the integrity of its eIF4E‐binding site and it coincides with the subcellular re‐distribution of eIF4E. The eIF4E export RNP is distinct in composition from the bulk mRNA export pathway, in that eIF4E‐ and eIF4E‐sensitive mRNAs do not associate with general mRNA export factors such as TAP/NXF1 or REF/Aly. Our data indicate that mRNA export pathways have evolved for specific mRNAs enabling the differential regulation of biochemical pathways by modulating the expression of groups of genes at the level of their export.  相似文献   

6.
Recently we showed that essential components for the initiation of protein synthesis, namely the eukaryotic initiation factor 4E (eIF4E, mRNA-cap-binding protein) and its repressors 4E-BP1 as well as 4E-BP2, are proteolytically processed in the porcine endometrium during implantation. Here, the situation during placentation was compared with ovariectomized (OVX) animals and animals on pregnancy day 1 (PD1). Furthermore, the research was extended to factors which phosphorylate eIF4E and 4E-BPs and regulate their activities. These are the protein kinase B/mammalian target of rapamycin kinase (Akt/mTor) with the regulators Raptor and Rictor as well as the mitogen activated protein kinases (MAPKs): extra cellular-signal regulated kinase 1 and 2 (ERK1 and ERK2). Striking differences in the placentation site (PS) and the areas aside from PS (peri-PS) were observed. EIF4E and 4E-BP2 truncation as well as 4E-BP1 degradation took place in the endometrium of the peri-PS on PD24. Accompanied by a fragmentation of Akt/mTor, no expression of Rictor was observed, whereas the abundance of Raptor was not altered. On the contrary, MAPKs expression and phosphorylation remained almost stable in the peri-PS. In conclusion, the results indicated that on PD24 the translational regulation was shifted to 4E-BP2 control. Furthermore, the Akt/mTor signaling cascade seemed to be down regulated which suggest reduced phosphorylation of 4E-BP2. Whereas Akt was proteolyzed, the observed mTor fragments represented most likely splicing variants. The results indicate that translational control of gene expression is an important feature in the porcine endometrium during early pregnancy.  相似文献   

7.
Eukaryotic translation initiation factor 4E (eIF4E) is the cap‐binding protein that binds the 5′ cap structure of cellular messenger RNAs (mRNAs). Despite the obligatory role of eIF4E in cap‐dependent mRNA translation, how the translation activity of eIF4E is controlled remains largely undefined. Here, we report that mammalian eIF4E is regulated by SUMO1 (small ubiquitin‐related modifier 1) conjugation. eIF4E sumoylation promotes the formation of the active eIF4F translation initiation complex and induces the translation of a subset of proteins that are essential for cell proliferation and preventing apoptosis. Furthermore, disruption of eIF4E sumoylation inhibits eIF4E‐dependent protein translation and abrogates the oncogenic and antiapoptotic functions associated with eIF4E. These data indicate that sumoylation is a new fundamental regulatory mechanism of protein synthesis. Our findings suggest further that eIF4E sumoylation might be important in promoting human cancers.  相似文献   

8.
Cup is an eIF4E-binding protein (4E-BP) that plays a central role in translational regulation of localized mRNAs during early Drosophila development. In particular, Cup is required for repressing translation of the maternally contributed oskar, nanos, and gurken mRNAs, all of which are essential for embryonic body axis determination. Here, we present the 2.8 Å resolution crystal structure of a minimal eIF4E–Cup assembly, consisting of the interacting regions of the two proteins. In the structure, two separate segments of Cup contact two orthogonal faces of eIF4E. The eIF4E-binding consensus motif of Cup (YXXXXLΦ) binds the convex side of eIF4E similarly to the consensus of other eIF4E-binding proteins, such as 4E-BPs and eIF4G. The second, noncanonical, eIF4E-binding site of Cup binds laterally and perpendicularly to the eIF4E β-sheet. Mutations of Cup at this binding site were shown to reduce binding to eIF4E and to promote the destabilization of the associated mRNA. Comparison with the binding mode of eIF4G to eIF4E suggests that Cup and eIF4G binding would be mutually exclusive at both binding sites. This shows how a common molecular surface of eIF4E might recognize different proteins acting at different times in the same pathway. The structure provides insight into the mechanism by which Cup disrupts eIF4E–eIF4G interaction and has broader implications for understanding the role of 4E-BPs in translational regulation.  相似文献   

9.
10.
The mRNA cap‐binding oncoprotein “eIF4E” is phosphorylated at residue S209 by Mnk kinases, and is closely associated with tumor development and progression. Despite being well‐established, mechanistic details at the molecular level of mRNA recognition by eIF4E due to phosphorylation have not been clearly elucidated. We investigated this through molecular modeling and simulations of the S209 phosphorylated derivative of eIF4E and explored the associated implication on the binding of the different variants of mRNA‐cap analogs. A key feature that emerges as a result of eIF4E phosphorylation is a salt‐bridge network between the phosphorylated S209 (pS209) and a specific pair of lysine residues (K159 and K162) within the cap‐binding interface on eIF4E. This interaction linkage stabilizes the otherwise dynamic C‐terminal region of the protein, resulting in the attenuation of the overall plasticity and accessibility of the binding pocket. The pS209‐K159 salt‐bridge also results in an energetically less favorable environment for the bound mRNA‐cap primarily due to electrostatic repulsion between the negative potentials from the phosphates in the cap and those appearing as a result of phosphorylation of S209. These observations collectively imply that the binding of the mRNA‐cap will be adversely affected in the phosphorylated derivative of eIF4E. We propose a mechanistic model highlighting the role of eIF4E phosphorylation as a regulatory tool in modulating eIF4E: mRNA‐cap recognition and its potential impact on translation initiation.  相似文献   

11.
To investigate the binding preference of eIF4E for the three eIF4E-binding isoforms (4E-BP1-3) and the function of N-terminal flexible region of eIF4E for their interactions, the binding parameters of recombinant full-length and N-terminal residues-deleted eIF4Es with 4E-BP1-3 were investigated by the surface plasmon resonance (SPR) analysis. Consequently, it was clarified that 4E-BP2 exhibits the highest binding affinity for both m7GTP-bound and -unbound full-length eIF4Es when compared with 4E-BP1 and 4E-BP3. This is primarily due to the difference among their dissociation rates, because their association rates are almost the same. Interestingly, the deletion of the 33 N-terminal residues of eIF4E increased its binding affinities for 4E-BP1 and 4E-BP2 markedly, whereas such a change was not observed by at least the N-terminal deletion up to 26 residues. In contrast, the binding parameters of 4E-BP3 were hardly influenced by N-terminal deletion up to 33 residues. From the comparison of the amino acid sequences of 4E-BP1-3, the present result indicates the importance of N-terminal flexible region of eIF4E for the suppressive binding with 4E-BP1 and 2, together with the possible contribution of N-terminal sequence of 4E-BP isoform to the regulative binding to eIF4E.  相似文献   

12.
13.
14.
4E-BP1 is a protein that, in its hypophosphorylated state, binds the mRNA cap-binding protein eIF4E and represses cap-dependent mRNA translation. By doing so, it plays a major role in the regulation of gene expression by controlling the overall rate of mRNA translation as well as the selection of mRNAs for translation. Phosphorylation of 4E-BP1 causes it to release eIF4E to function in mRNA translation. 4E-BP1 is also subject to covalent addition of N-acetylglucosamine to Ser or Thr residues (O-GlcNAcylation) as well as to truncation. In the truncated form, it is both resistant to phosphorylation and able to bind eIF4E with high affinity. In the present study, Ins2(Akita/+) diabetic mice were used to test the hypothesis that hyperglycemia and elevated flux of glucose through the hexosamine biosynthetic pathway lead to increased O-GlcNAcylation and truncation of 4E-BP1 and consequently decreased eIF4E function in the liver. The amounts of both full-length and truncated 4E-BP1 bound to eIF4E were significantly elevated in the liver of diabetic as compared with non-diabetic mice. In addition, O-GlcNAcylation of both the full-length and truncated proteins was elevated by 2.5- and 5-fold, respectively. Phlorizin treatment of diabetic mice lowered blood glucose concentrations and reduced the expression and O-GlcNAcylation of 4E-BP1. Additionally, when livers were perfused in the absence of insulin, 4E-BP1 phosphorylation in the livers of diabetic mice was normalized to the control value, yet O-GlcNAcylation and the association of 4E-BP1 with eIF4E remained elevated in the liver of diabetic mice. These findings provide insight into the pathogenesis of metabolic abnormalities associated with diabetes.  相似文献   

15.
腺病毒E4启动子结合蛋白-4(E4BP4)是哺乳动物细胞核内的一种碱性亮氨酸拉链(bZIP)型转录因子,参与调控细胞的存活和增殖。前期研究表明,它在孕第5天的小鼠着床位点有明显的高表达。本文分别应用Northem blot、in situ杂交、Western blot和免疫组织化学技术,对E4BP4基因在小鼠妊娠初始期子宫、着床期胚胎着床位点和非着床位点的表达情况进行了研究。观察发现:在小鼠妊娠初始期,E4BP4基因在子宫组织中的表达逐步上调;至胚胎着床期间,其在胚胎着床位点的表达水平进一步提高,并明显高于非着床位点;该基因的表达不依赖于胚胎,人工蜕膜化可诱导其表达:E4BP4 mRNA和E4BP4蛋白分子都主要分布于子宫腔周围的基质细胞和蜕膜细胞。上述结果提示E4BP4基因可能通过促进着床位点基质细胞的增殖和抑制蜕膜细胞的凋亡而参与胚胎着床过程的调控。  相似文献   

16.
BACKGROUND INFORMATION: The translational inhibitor protein 4E-BP1 [eIF4E (eukaryotic initiation factor 4E)-binding protein 1] regulates the availability of polypeptide chain initiation factor eIF4E for protein synthesis. Initiation factor eIF4E binds the 5' cap structure present on all cellular mRNAs. Its ability to associate with initiation factors eIF4G and eIF4A, forming the eIF4F complex, brings the mRNA to the 43S complex during the initiation of translation. Binding of eIF4E to eIF4G is inhibited in a competitive manner by 4E-BP1. Phosphorylation of 4E-BP1 decreases the affinity of this protein for eIF4E, thus favouring the binding of eIF4G and enhancing translation. We have previously shown that induction or activation of the tumour suppressor protein p53 rapidly leads to 4E-BP1 dephosphorylation, resulting in sequestration of eIF4E, decreased formation of the eIF4F complex and inhibition of protein synthesis. RESULTS: We now report that activation of p53 also results in modification of 4E-BP1 to a truncated form. Unlike full-length 4E-BP1, which is reversibly phosphorylated at multiple sites, the truncated protein is almost completely unphosphorylated. Moreover, the latter interacts with eIF4E in preference to full-length 4E-BP1. Inhibitor studies indicate that the p53-induced cleavage of 4E-BP1 is mediated by the proteasome and is blocked by conditions that inhibit the dephosphorylation of full-length 4E-BP1. Measurements of the turnover of 4E-BP1 indicate that the truncated form is much more stable than the full-length protein. CONCLUSIONS: The results suggest a model in which proteasome activity gives rise to a stable, hypophosphorylated and truncated form of 4E-BP1, which may exert a long-term inhibitory effect on the availability of eIF4E, thus contributing to the inhibition of protein synthesis and the growth-inhibitory and pro-apoptotic effects of p53.  相似文献   

17.
In this study, we document that the overall rate of protein synthesis decreases during in vitro maturation (IVM) of pig oocytes despite enhanced formation of the 5' cap structure eIF4F. Within somatic/interphase cells, formation of the eIF4F protein complex correlates very well with overall rates of protein translation, and the formation of this complex is controlled primarily by the availability of the 5' cap binding protein eIF4E. We show that the eIF4E inhibitory protein, 4E-BP1, becomes phosphorylated during IVM, which results in gradual release of eIF4E from 4E-BP1, as documented by immunoprecipitation analyses. Isoelectric focusing and Western blotting experiments show conclusively that eIF4E becomes gradually phosphorylated with a maximum at metaphase II (M II). The activity of eIF4E and its ability to bind mRNA also increases during oocyte maturation as documented in experiments with m7-methyl GTP-Sepharose, which mimics the cap structure of mRNA. Complementary analysis of flow-through fraction for 4E-BP1, and eIF4G proteins additionally provides evidence for enhanced formation of cap-binding protein complex eIF4F. Altogether, our results bring new insights to the regulation of translation initiation during meiotic division, and more specifically clarify that 4E-BP1 hyper-phosphorylation is not the cause of the observed suppression of overall translation rates.  相似文献   

18.
Modulation of mRNA binding to the 40 S ribosomal subunit during translation initiation controls not only global rates of protein synthesis but also regulates the pattern of protein expression by allowing for selective inclusion, or exclusion, of mRNAs encoding particular proteins from polysomes. The mRNA binding step is modulated by signaling through a protein kinase known as the mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 directly phosphorylates the translational repressors eIF4E binding proteins (4E-BP) 1 and 2, releasing them from the mRNA cap binding protein eIF4E, thereby promoting assembly of the eIF4E·eIF4G complex. mTORC1 also phosphorylates the 70-kDa ribosomal protein S6 kinase 1 (p70S6K1), which subsequently phosphorylates eIF4B, and programmed cell death 4 (PDCD4), which sequesters eIF4A from the eIF4E·eIF4G complex, resulting in repressed translation of mRNAs with highly structured 5′-untranslated regions. In the present study, we compared the role of the 4E-BPs in the regulation of global rates of protein synthesis to that of eIF4B and PDCD4. We found that maintenance of eIF4E interaction with eIF4G was not by itself sufficient to sustain global rates of protein synthesis in the absence of mTORC1 signaling to p70S6K1; phosphorylation of both eIF4B and PDCD4 was additionally required. We also found that the interaction of eIF4E with eIF4G was maintained in the liver of fasted rats as well as in serum-deprived mouse embryo fibroblasts lacking both 4E-BP1 and 4E-BP2, suggesting that the interaction of eIF4G with eIF4E is controlled primarily through the 4E-BPs.  相似文献   

19.
Decapping by Dcp1 in Saccharomyces cerevisiae is a key step in mRNA degradation. However, the cap also binds the eukaryotic initiation factor (eIF) complex 4F and its associated proteins. Characterisation of the relationship between decapping and interactions involving eIF4F is an essential step towards understanding polysome disassembly and mRNA decay. Three types of observation suggest how changes in the functional status of eIF4F modulate mRNA stability in vivo. First, partial disruption of the interaction between eIF4E and eIF4G, caused by mutations in eIF4E or the presence of the yeast 4E-binding protein p20, stabilised mRNAs. The interactions of eIF4G and p20 with eIF4E may therefore act to modulate the decapping process. Since we also show that the in vitro decapping rate is not directly affected by the nature of the body of the mRNA, this suggests that changes in eIF4F structure could play a role in triggering decapping during mRNA decay. Second, these effects were seen in the absence of extreme changes in global translation rates in the cell, and are therefore relevant to normal mRNA turnover. Third, a truncated form of eIF4E (Delta196) had a reduced capacity to inhibit Dcp1-mediated decapping in vitro, yet did not change cellular mRNA half-lives. Thus, the accessibility of the cap to Dcp1 in vivo is not simply controlled by competition with eIF4E, but is subject to switching between molecular states with different levels of access.  相似文献   

20.
The evolutionary origin of eukaryotes spurred the transition from prokaryotic-like translation to a more sophisticated, eukaryotic translation. During this process, successive gene duplication of a single, primordial eIF4E gene encoding the mRNA cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) gave rise to a plethora of paralog genes across eukaryotes that underwent further functional diversification in RNA metabolism. The ability to take different roles is due to eIF4E promiscuity in binding many partner proteins, rendering eIF4E a highly versatile and multifunctional player that functions as a molecular wildcard. Thus, in metazoans, eIF4E paralogs are involved in various processes, including messenger RNA (mRNA) processing, export, translation, storage, and decay. Moreover, some paralogs display differential expression in tissues and developmental stages and show variable biochemical properties. In this review, we discuss recent advances shedding light on the functional diversification of eIF4E in metazoans. We emphasise humans and two phylogenetically distant species which have become paradigms for studies on development, namely the fruit fly Drosophila melanogaster and the roundworm Caenorhabditis elegans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号