首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the metaphor of behavioral momentum, reinforcement is assumed to strengthen discriminated operant behavior in the sense of increasing its resistance to disruption, and extinction is viewed as disruption by contingency termination and reinforcer omission. In multiple schedules of intermittent reinforcement, resistance to extinction is an increasing function of reinforcer rate, consistent with a model based on the momentum metaphor. The partial-reinforcement extinction effect, which opposes the effects of reinforcer rate, can be explained by the large disruptive effect of terminating continuous reinforcement despite its strengthening effect during training. Inclusion of a term for the context of reinforcement during training allows the model to account for a wide range of multiple-schedule extinction data and makes contact with other formulations. The relation between resistance to extinction and reinforcer rate on single schedules of intermittent reinforcement is exactly opposite to that for multiple schedules over the same range of reinforcer rates; however, the momentum model can give an account of resistance to extinction in single as well as multiple schedules. An alternative analysis based on the number of reinforcers omitted to an extinction criterion supports the conclusion that response strength is an increasing function of reinforcer rate during training.  相似文献   

2.
Four conditioned approach experiments with rats assessed for effects of number of acquisition trials on extinction of conditioned responding, when number of acquisition sessions and total acquisition time were held constant. In Experiment 1, 32 trials per acquisition session led to more extinction responding than did 1 or 2 trials per session but less than did 4 trials per session. In Experiment 2, 2 trials per acquisition session led to more spontaneous recovery than did 32 trials per session. These latter findings are reminiscent of the overtraining extinction effect (OEE). Experiment 3 attempted to reduce the OEE with a preconditioning phase of partial reinforcement. Experiment 4 attempted to reduce the beneficial within-subject effects of increasing the number of acquisition trials on extinction observed by Gottlieb and Rescorla (2010) by extinguishing stimuli in different sessions. Overall, results suggest a procedural asymmetry: between-subject, increasing the number of trials between any pair of trials does not lead to greater persistence of responding during extinction; within-subject, it does. Results are discussed from an associative perspective, with a focus on explanations involving either frustration or comparator mechanisms, and from an information processing perspective, with a focus on Rate Estimation Theory.  相似文献   

3.
On the interpretation and application of mean times to extinction   总被引:2,自引:0,他引:2  
As a metric of population viability, conservation biologists routinely predict the mean time to extinction (MTE). Interpretation of MTE depends on the underlying distribution of times to extinction (DTE). Despite claims to the contrary, all information regarding extinction risk can be obtained from this single statistic, the MTE, provided the DTE is exponential. We discuss the proper interpretation of MTE and illustrate how to calculate any population viability statistic when only the MTE is known and the DTE is assumed to be exponential. We also discuss the restrictive assumptions underlying the exponential DTE and the conditions under which alternative models for the DTE are preferable to the conventional (exponential) model. Despite superficial similarities between the exponential and alternative DTEs, several key differences can lead to substantially different interpretations of the MTE.  相似文献   

4.
  1. Mutual reinforcement between abiotic and biotic factors can drive small populations into a catastrophic downward spiral to extinction—a process known as the “extinction vortex.” However, empirical studies investigating extinction dynamics in relation to species'' traits have been lacking.
  2. We assembled a database of 35 vertebrate populations monitored to extirpation over a period of at least ten years, represented by 32 different species, including 25 birds, five mammals, and two reptiles. We supplemented these population time series with species‐specific mean adult body size to investigate whether this key intrinsic trait affects the dynamics of populations declining toward extinction.
  3. We performed three analyses to quantify the effects of adult body size on three characteristics of population dynamics: time to extinction, population growth rate, and residual variability in population growth rate.
  4. Our results provide support for the existence of extinction vortex dynamics in extirpated populations. We show that populations typically decline nonlinearly to extinction, while both the rate of population decline and variability in population growth rate increase as extinction is approached. Our results also suggest that smaller‐bodied species are particularly prone to the extinction vortex, with larger increases in rates of population decline and population growth rate variability when compared to larger‐bodied species.
  5. Our results reaffirm and extend our understanding of extinction dynamics in real‐life extirpated populations. In particular, we suggest that smaller‐bodied species may be at greater risk of rapid collapse to extinction than larger‐bodied species, and thus, management of smaller‐bodied species should focus on maintaining higher population abundances as a priority.
  相似文献   

5.
Half of all artiodactyls (even-toed hoofed mammals) are threatened with extinction, around double the mammalian average. Here, using a complete species-level phylogeny, we construct a multivariate model to assess for the first time which intrinsic (biological) and extrinsic (anthropogenic and environmental) factors influence variation in extinction risk in artiodactyls. Globally artiodactyls at greatest risk live in economically less developed areas, have older weaning ages and smaller geographical ranges. Our findings suggest that identifying predictors of threat is complicated by interactions between both biological and anthropogenic factors, resulting in differential responses to threatening processes. Artiodactyl species that experience unregulated hunting live in significantly less economically developed areas than those that are not hunted; however, hunted species are more susceptible to extinction if they have slower reproductive rates (older weaning ages). In contrast, risk in non-hunted artiodactyls is unrelated to reproductive rate and more closely associated with the economic development of the region in which they live.  相似文献   

6.
Will the ongoing extinction crisis cause a severe loss of evolutionary information accumulated over millions of years on the tree of life? This question has been largely explored, particularly for vertebrates and angiosperms. However, no equivalent effort has been devoted to gymnosperms. Here, we address this question focusing on cycads, the gymnosperm group exhibiting the highest proportion of threatened species in the plant kingdom. We assembled the first complete phylogeny of cycads and assessed how species loss under three scenarios would impact the cycad tree of life. These scenarios are as follows: (1) All top 50% of evolutionarily distinct (ED ) species are lost; (2) all threatened species are lost; and (3) only all threatened species in each IUCN category are lost. Finally, we analyzed the biogeographical pattern of cycad diversity hotspots and tested for gaps in the current global conservation network. First, we showed that threatened species are not significantly clustered on the cycad tree of life. Second, we showed that the loss of all vulnerable or endangered species does not depart significantly from random loss. In contrast, the loss of all top 50% ED , all threatened or all critically endangered species, would result in a greater loss of PD (Phylogenetic Diversity) than expected. To inform conservation decisions, we defined five hotpots of diversity, and depending on the diversity metric used, these hotspots are located in Southern Africa, Australia, Indo‐Pacific, and Mexico and all are found within protected areas. We conclude that the phylogenetic diversity accumulated over millions of years in the cycad tree of life would not survive the current extinction crisis. As such, prioritizing efforts based on ED and concentrating efforts on critically endangered species particularly in southern Africa, Australia, Indo‐Pacific, and Mexico are required to safeguarding the evolutionary diversity in the cycad tree of life.  相似文献   

7.
Reduction in body size of organisms following mass extinctions is well‐known and often ascribed to the Lilliput effect. This phenomenon is expressed as a temporary body size reduction within surviving species. Despite its wide usage the term is often loosely applied to any small post‐extinction taxa. Here we assess the size of bivalves of the family Limidae (Rafineque) prior to, and in the aftermath of, the end‐Triassic mass extinction event. Of the species studied only one occurs prior to the extinction event, though is too scarce to test for the Lilliput effect. Instead, newly evolved species originate at small body sizes and undergo a within‐species size increase, most dramatically demonstrated by Plagiostoma giganteum (Sowerby) which, over two million years, increases in size by 179%. This trend is seen in both field and museum collections. We term this within‐species size increase of newly originated species in the aftermath of mass extinction, the Brobdingnag effect, after the giants that were contemporary with the Lilliputians in Swift's Gulliver's Travels. The size increase results from greater longevity and faster growth rates. The cause of the effect is unclear, although it probably relates to improved environmental conditions. Oxygen‐poor conditions in the Early Jurassic are associated with populations of smaller body size caused by elevated juvenile mortality but these are local/regional effects that do not alter the long‐term, size increase. Although temperature‐size relationships exist for many organisms (Temperature‐Size Rule and Bergmann's Rule), the importance of this is unclear here because of a poorly known Early Jurassic temperature record.  相似文献   

8.
The end‐Cretaceous mass extinction ranks among the most severe extinctions of all time; however, patterns of extinction and recovery remain incompletely understood. In particular, it is unclear how severe the extinction was, how rapid the recovery was and how sampling biases might affect our understanding of these processes. To better understand terrestrial extinction and recovery and how sampling influences these patterns, we collected data on the occurrence and abundance of fossil mammals to examine mammalian diversity across the K‐Pg boundary in North America. Our data show that the extinction was more severe and the recovery more rapid than previously thought. Extinction rates are markedly higher than previously estimated: of 59 species, four survived (93% species extinction, 86% of genera). Survival is correlated with geographic range size and abundance, with widespread, common species tending to survive. This creates a sampling artefact in which rare species are both more vulnerable to extinction and less likely to be recovered, such that the fossil record is inherently biased towards the survivors. The recovery was remarkably rapid. Within 300 000 years, local diversity recovered and regional diversity rose to twice Cretaceous levels, driven by increased endemicity; morphological disparity increased above levels observed in the Cretaceous. The speed of the recovery tends to be obscured by sampling effects; faunas show increased endemicity, such that a rapid, regional increase in diversity and disparity is not seen in geographically restricted studies. Sampling biases that operate against rare taxa appear to obscure the severity of extinction and the pace of recovery across the K‐Pg boundary, and similar biases may operate during other extinction events.  相似文献   

9.
Allee effects reduce the viability of small populations in many different ways, which act synergistically to lead populations towards extinction vortexes. The Sierra Morena wolf population, isolated in the south of the Iberian Peninsula and composed of just one or few packs for decades, represents a good example of how diverse threats act additively in very small populations. We sequenced the genome of one of the last wolves identified (and road‐killed) in Sierra Morena and that of another wolf in the Iberian Wolf Captive Breeding Program and compared them with other wolf and dog genomes from around the world (including two previously published genome sequences from northern Iberian wolves). The results showed relatively low overall genetic diversity in Iberian wolves, but diverse population histories including past introgression of dog genes. The Sierra Morena wolf had an extraordinarily high level of inbreeding and long runs of homozygosity, resulting from the long isolation. In addition, about one‐third of the genome was of dog origin. Despite the introgression of dog genes, heterozygosity remained low because of continued inbreeding after several hybridization events. The results thus illustrate the case of a small and isolated wolf population where the low population density may have favoured hybridization and introgression of dog alleles, but continued inbreeding may have resulted in large chromosomal fragments of wolf origin completely disappearing from the population, and being replaced by chromosomal fragments of dog origin. The latest population surveys suggest that this population may have gone extinct.  相似文献   

10.
许再富 《生物多样性》2000,8(1):112-119
根据有关历史资料的统计分析,在元朝以后,滇南各土司向天朝上贡的犀角估算有79~123支,并在清朝于18世纪末19世纪初犀牛就成为濒于灭绝的物种,而最后的一头犀牛是在1957年在滇南被捕杀。滇南各土司在元朝以后向天朝上贡的大象估算有1140~1339头、象牙38~76支,加上大象和犀牛被用于频繁的战争,它在17世纪中期就处于濒危的状态。因而,向天朝上贡这一特殊的人文因素是大象和犀牛在滇南濒危和灭绝的重要原因之一。虽然犀牛已在滇南灭绝,但从现代的生态环境来说,实现再引种是可能的。  相似文献   

11.
The timing and nature of biotic recovery from the devastating end-Permian mass extinction (252 Ma) are much debated. New studies in South China suggest that complex marine ecosystems did not become re-established until the middle–late Anisian (Middle Triassic), much later than had been proposed by some. The recently discovered exceptionally preserved Luoping biota from the Anisian Stage of the Middle Triassic, Yunnan Province and southwest China shows this final stage of community assembly on the continental shelf. The fossil assemblage is a mixture of marine animals, including abundant lightly sclerotized arthropods, associated with fishes, marine reptiles, bivalves, gastropods, belemnoids, ammonoids, echinoderms, brachiopods, conodonts and foraminifers, as well as plants and rare arthropods from nearby land. In some ways, the Luoping biota rebuilt the framework of the pre-extinction latest Permian marine ecosystem, but it differed too in profound ways. New trophic levels were introduced, most notably among top predators in the form of the diverse marine reptiles that had no evident analogues in the Late Permian. The Luoping biota is one of the most diverse Triassic marine fossil Lagerstätten in the world, providing a new and early window on recovery and radiation of Triassic marine ecosystems some 10 Myr after the end-Permian mass extinction.  相似文献   

12.
Systemic injection of arginine vasopressin (AVP) (1 μ/rat) significantly prolonged extinction of a pole-jump, active avoidance response in rats; lateral ventricular injection of 1000-fold less AVP (1 ng/rat) produced similar results. A new AVP analogue, [1-deaminopenicillamine-2-(O-methyl)-tyrosine]arginine vasopressin (dPTyr-(Me)AVP), is known to antagonize behavioral and vascular effects of exogenous AVP at molar ratios of 5:1. At a dose of 100 μ/rat (subcutaneously) dPTyr-(Me)AVP produces, by itself, a behavioral effect opposite to that of exogenous AVP, namely a facilitation of extinction. Injections of dPTyr-(Me)AVP into the lateral ventricle were ineffective except at a dose of 10 μg/rat. These results confirm previous reports of the effect of vasopressin on delaying extinction of avoidance behavior, but suggest a site of action distant from the lateral ventricle.  相似文献   

13.
Diversity dynamics among bivalves during the Triassic and Early Jurassic provides the opportunity to analyse the recovery patterns after two mass extinctions: Permian/Triassic and Triassic/Jurassic (T/J). The results presented here are based on a newly compiled worldwide genus-level database and are contrasted to the main morphological characters of the different taxonomical (orders and their constituent families and genera) and ecological groups. Many of such morphological characters are innovations appearing during the time span considered. Diversity and evolutionary rates were assessed and compared between these groups. During the Early Triassic there was a slow recovery, dominated by epifaunal taxa, the order Pectinida being the most diverse. The major post-Permian radiation took place during the Anisian, with several morphological and ecological innovations appearing and/or diversifying. The Late Triassic was a time of great diversification and ecological specialisation. Although the T/J was a true mass extinction for bivalves, it was not indiscriminate as its impact was stronger on specialised orders and not all ecological categories were equally affected. Recovery during earliest Jurassic was fast, confirming the high-evolutionary resilience of bivalve molluscs, except for groups with thick shells and tropical distribution, probably because of a biocalcification crisis.  相似文献   

14.
15.
Although the recent historical period is usually treated as a temporal base-line for understanding patterns of mammal extinction, mammalian biodiversity loss has also taken place throughout the Late Quaternary. We explore the spatial, taxonomic and phylogenetic patterns of 241 mammal species extinctions known to have occurred during the Holocene up to the present day. To assess whether our understanding of mammalian threat processes has been affected by excluding these taxa, we incorporate extinct species data into analyses of the impact of body mass on extinction risk. We find that Holocene extinctions have been phylogenetically and spatially concentrated in specific taxa and geographical regions, which are often not congruent with those disproportionately at risk today. Large-bodied mammals have also been more extinction-prone in most geographical regions across the Holocene. Our data support the extinction filter hypothesis, whereby regional faunas from which susceptible species have already become extinct now appear less threatened; they may also suggest that different processes are responsible for driving past and present extinctions. We also find overall incompleteness and inter-regional biases in extinction data from the recent fossil record. Although direct use of fossil data in future projections of extinction risk is therefore not straightforward, insights into extinction processes from the Holocene record are still useful in understanding mammalian threat.  相似文献   

16.
Aim The biogeographical patterns and drivers of diversity on oceanic islands in the tropical South Pacific (TSP) are synthesized. We use published studies to determine present patterns of diversity on TSP islands, the likely sources of the biota on these islands and how the islands were colonized. We also investigate the effect of extinctions. Location We focus on oceanic islands in the TSP. Methods We review available literature and published molecular studies. Results Examples of typical island features (e.g. gigantism, flightlessness, gender dimorphism) are common, as are adaptive radiations. Diversity decreases with increasing isolation from mainland sources and with decreasing size and age of archipelagos, corresponding well with island biogeographical expectations. Molecular studies support New Guinea/Malesia, New Caledonia and Australia as major source areas for the Pacific biota. Numerous studies support dispersal‐based scenarios, either over several 100 km (long‐distance dispersal) or over shorter distances by island‐hopping (stepping stones) and transport by human means (hitch‐hiking). Only one vicariance explanation, the eastward drift of continental fragments (shuttles) that may have contributed biota to Fiji from New Caledonia, is supported by some geological evidence, although there is no evidence for the transport of taxa on shuttle fragments. Another vicariance explanation, the existence of a major continental landmass in the Pacific within the last 100 Myr (Atlantis theory), receives little support and appears unlikely. Extinction of lineages in source areas and persistence in the TSP has probably occurred many times and has resulted in misinterpretation of biogeographical data. Main conclusions Malesia has long been considered the major source region for the biota of oceanic islands in the TSP because of shared taxa and high species diversity. However, recent molecular studies have produced compelling support for New Caledonia and Australia as alternative important source areas. They also show dispersal events, and not vicariance, to have been the major contributors to the current biota of the TSP. Past extinction events can obscure interpretations of diversity patterns.  相似文献   

17.
The lower Rabbitkettle Formation of northwestern Canada is a monofacial Upper Cambrian unit of variably calcareous, argillaceous siltstone and fine-grained sandstone with rare bioclastic grainstone, deposited on a gentle slope below fair-weather wave base with no discernible fluctuation in water depth. The trilobite fauna is a mixture of pandemic agnostoids and Laurentian polymeroids, including protaspides and meraspides, and individuals are disarticulated, non-abraded and mostly oriented convex-upward. Bioclasts are interpreted as in situ elements affected only by weak bottom currents and storm-induced turbulence. A major proportion of the larger (≥5 mm across) polymeroid cranidia and pygidia in the lower part (Marjuman) of the formation are broken; large thoracic segments are often broken at the axial furrow and some broken free cheeks occur, but essentially no broken agnostoids or hypostomes were observed. Trilobites are not broken in upper beds (Steptoean), above the base of the Glyptagnostus retculatus Zone. Physical breakage cannot be dismissed entirely, but most damage is interpreted to be due to size-selective predation, possibly through lethal blows similar to those delivered by some extant stomatopod crustaceans. A possible culprit may be an animal akin to Yohoia , known from the Middle Cambrian Burgess Shale. The distribution of attacked trilobites serves as a proxy for the presence and disappearance of soft-bodied carnivores. In the Rabbitkettle Formation, it suggests that Burgess Shale-type animals may have persisted into the Late Cambrian but suffered extinction at the Marjuman-Steptoean 'biomere' event when most trilobite species vanished.  相似文献   

18.
从证据法学角度看,《病历书写基本规范》对入院记录的要求存在病历作为证据形式上不完整的瑕疵。实行患方确认病史签名,可以有效弥补这一瑕疵,维护医院、患者及其他第三方的正当权益。但由此引起的法律相关问题,需要进一步研究。  相似文献   

19.
20.
Nested cladistic analysis (NCA) is increasingly being used to infer historical population-level processes, including population fragmentation, range expansion and long-distance colonization. However, the effects on interpretation of NCA inferences of stochastic extinction of haplotypes due to genetic drift (lineage sorting), or of haplotype loss via localized biotic or climatic influences, have not been thoroughly explored. We provide empirical evidence suggesting that NCA may misinterpret population history when haplotypes or haplotype groups from one clade are replaced by those of another clade. We do so by using NCA to analyse mitochondrial sequences from the toad Bufo woodhousii from 45 locations spanning the Great Plains and southwestern USA. Portions of this region were glaciated and/or desertified in the late Pleistocene and early Holocene, and hence uninhabitable for plains-dwelling organisms. Although NCA inferences of isolation-by-distance and gradual range expansion in B. woodhousii are compatible with expectations based on climatic data and toad biology, NCA also detected several instances of long-distance movement. Such movement seems unlikely, given the low vagility of this species. We conclude that inferences of long-distance colonization likely result from extinction of haplotypes in intervening areas. We suggest using additional methods to look for congruent inferences, and amending the NCA inference key, to help avoid misinterpretations resulting from haplotype extinction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号