首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The maintenance of genomic integrity is of main importance to the survival and health of organisms which are continuously exposed to genotoxic stress. Cells respond to DNA damage by activating survival pathways consisting of cell cycle checkpoints and repair mechanisms. However, the signal that triggers the DNA damage response is not necessarily a direct detection of the primary DNA lesion. In fact, chromatin defects may serve as initiating signals to activate those mechanisms. If the modulation of chromatin structure could initiate a checkpoint response in a direct manner, this supposes the existence of specific chromatin sensors. p19INK4d, a member of the INK4 cell cycle inhibitors, plays a crucial role in regulating genomic stability and cell viability by enhancing DNA repair. Its expression is induced in cells injured by one of several genotoxic treatments like cis-platin, UV light or neocarzinostatin. Nevertheless, when exogenous DNA damaged molecules are introduced into the cell, this induction is not observed. Here, we show that p19INK4d is enhanced after chromatin relaxation even in the absence of DNA damage. This induction was shown to depend upon ATM/ATR, Chk1/Chk2 and E2F activity, as is the case of p19INK4d induction by endogenous DNA damage. Interestingly, p19INK4d improves DNA repair when the genotoxic damage is caused in a relaxed-chromatin context. These results suggest that changes in chromatin structure, and not DNA damage itself, is the actual trigger of p19INK4d induction. We propose that, in addition to its role as a cell cycle inhibitor, p19INK4d could participate in a signaling network directed to detecting and eventually responding to chromatin anomalies.  相似文献   

2.
Genome integrity and cell proliferation and survival are regulated by an intricate network of pathways that includes cell cycle checkpoints, DNA repair and recombination, and programmed cell death. It makes sense that there should be a coordinated regulation of these different processes, but the components of such mechanisms remain unknown. In this report, we demonstrate that p19INK4d expression enhances cell survival under genotoxic conditions. By using p19INK4d-overexpressing clones, we demonstrated that p19INK4d expression correlates with the cellular resistance to UV treatment with increased DNA repair activity against UV-induced lesions. On the contrary, cells transfected with p19INK4d antisense cDNA show reduced ability to repair DNA damage and increased sensitivity to genotoxic insult when compared with their p19INK4d-overexpressing counterparts. Consistent with these findings, our studies also show that p19INK4d-overexpressing cells present not only a minor accumulation of UV-induced chromosomal aberrations but a lower frequency of spontaneous chromosome abnormalities than p19INK4d-antisense cells. Lastly, we suggest that p19INK4d effects are dissociated from its role as CDK4/6 inhibitor. The results presented herein support a crucial role for p19INK4d in regulating genomic stability and overall cell viability under conditions of genotoxic stress. We propose that p19INK4d would belong to a protein network that would integrate DNA repair, apoptotic and checkpoint mechanisms in order to maintain the genomic integrity.  相似文献   

3.
4.
5.
6.
7.
DNA is continuously exposed to damaging agents that can lead to changes in the genetic information with adverse consequences. Nonetheless, eukaryotic cells have mechanisms such as the DNA damage response (DDR) to prevent genomic instability. The DNA of eukaryotic cells is packaged into nucleosomes, which fold the genome into highly condensed chromatin, but relatively little is known about the role of chromatin accessibility in DNA repair. p19INK4d, a cyclin-dependent kinase inhibitor, plays an important role in cell cycle regulation and cellular DDR. Extensive data indicate that p19INK4d is a critical factor in the maintenance of genomic integrity and cell survival. p19INK4d is upregulated by various genotoxics, improving the repair efficiency for a variety of DNA lesions. The evidence of p19INK4d translocation into the nucleus and its low sequence specificity in its interaction with DNA prompted us to hypothesize that p19INK4d plays a role at an early stage of cellular DDR. In the present study, we demonstrate that upon oxidative DNA damage, p19INK4d strongly binds to and relaxes chromatin. Furthermore, in vitro accessibility assays show that DNA is more accessible to a restriction enzyme when a chromatinized plasmid is incubated in the presence of a protein extract with high levels of p19INK4d. Nuclear protein extracts from cells overexpressing p19INK4d are better able to repair a chromatinized and damaged plasmid. These observations support the notion that p19INK4d would act as a chromatin accessibility factor that allows the access of the repair machinery to the DNA damage site.  相似文献   

8.
The Ink4a/Arf ( CDKN2a) locus encodes two proteins that regulate distinct important tumor suppressor pathways represented by p53 and Rb. Loss of either p16INK4a or p19ARF was recently reported to reduce the ability of mouse cells to repair UV-induced DNA damage and to induce a UV-mutator phenotype. This observation was independent of cell cycle effects incurred by either p16INK4a and/or p19ARF loss, as it was demonstrable in unirradiated cells using UV-treated DNA. We suggest that this might explain why germ line mutations of INK4a/ARF predispose mainly to malignant melanoma, a UV-induced skin cancer, and provides a molecular explanation for the link between melanoma-genesis and impaired DNA repair. It also further demonstrates that regulation of cell cycle check points and DNA repair in response to genomic insults, such as ultraviolet irradiation are intricately interwoven processes. Differences in the apoptotic response to ultraviolet light between melanocytes and keratinocytes might explain why INK4a/ARF mutations predispose to malignant melanoma, but not to keratinocyte-derived skin cancers.  相似文献   

9.
p53 is an important mediator of the cellular stress response with roles in cell cycle control, DNA repair, and apoptosis. 53BP2, a p53-interacting protein, enhances p53 transactivation, impedes cell cycle progression, and promotes apoptosis through unknown mechanisms. We now demonstrate that endogenous 53BP2 levels increase following UV irradiation induced DNA damage in a p53-independent manner. In contrast, we found that the presence of a wild-type (but not mutant) p53 gene suppressed 53BP2 steady-state levels in cell lines with defined p53 genotypes. Likewise, expression of a tetracycline-regulated wild-type p53 cDNA in p53-null fibroblasts caused a reduction in 53BP2 protein levels. However, 53BP2 levels were not reduced if the tetracycline-regulated p53 cDNA was expressed after UV damage in these cells. This suggests that UV damage activates cellular factors that can relieve the p53-mediated suppression of 53BP2 protein. To address the physiologic significance of 53BP2 induction, we utilized stable cell lines with a ponasterone A-regulated 53BP2 cDNA. Conditional expression of 53BP2 cDNA lowered the apoptotic threshold and decreased clonogenic survival following UV irradiation. Conversely, attenuation of endogenous 53BP2 induction with an antisense oligonucleotide resulted in enhanced clonogenic survival following UV irradiation. These results demonstrate that 53BP2 is a DNA damage-inducible protein that promotes DNA damage-induced apoptosis. Furthermore, 53BP2 expression is highly regulated and involves both p53-dependent and p53-independent mechanisms. Our data provide new insight into 53BP2 function and open new avenues for investigation into the cellular response to genotoxic stress.  相似文献   

10.
UV or gamma irradiation mediated DNA damage activates p53 and induces cell cycle arrest. Induction of cyclin-dependent kinase inhibitor p21WAF1 by p53 after DNA damage plays an important role in cell cycle arrest after gamma irradiation. The p53 mediated cell cycle arrest has been postulated to allow cells to repair the DNA damage. Repair of UV damaged DNA occurs primarily by the nucleotide excision pathway (NER). It is known that p21WAF1 binds PCNA and inhibits PCNA function in DNA replication. PCNA is also required for repair by NER but there have been conflicting reports on whether p21 can inhibit PCNA function in NER. It has therefore been difficult to integrate the UV induced cell cycle arrest by p21 in the context of repair of UV damaged DNA. A recent study reported that p21WAF1 protein is degraded after low but not high doses of UV irradiation, that cell cycle arrest after UV is p21 independent, and that at low dose UV irradiation p21 degradation is essential for optimal DNA repair. These findings shed new light on the role of p21 in the cellular response to UV and clarify some outstanding issues concerning p21 function.  相似文献   

11.
UV or g irradiation mediated DNA damage activates p53 and induces cell cycle arrest. Induction of cyclin dependent kinase inhibitor p21WAF1 by p53 after DNA damage plays an important role in cell cycle arrest after gamma irradiation. The p53 mediated cell cycle arrest has been postulated to allow cells to repair the DNA damage. Repair of UV damaged DNA occurs primarily by the nucleotide excision pathway (NER). It is known that p21WAF1 binds PCNA and inhibits PCNA function in DNA replication. PCNA is also required for repair by NER but there have been conflicting reports on whether p21WAF1 can inhibit PCNA function in NER. It has therefore been difficult to integrate the UV induced cell cycle arrest by p21 in the context of repair of UV damaged DNA. A recent study reported that p21WAF1 protein is degraded after low but not high doses of UV irradiation, that cell cycle arrest after UV is p21 independent, and that at low dose UV irradiation p21WAF1 degradation is essential for optimal DNA repair. These findings shed new light on the role of p21 in the cellular response to UV and clarify some outstanding issues concerning p21WAF1 function.  相似文献   

12.
13.
The cyclin D-Cdk4-6/INK4/Rb/E2F pathway plays a key role in controlling cell growth by integrating multiple mitogenic and antimitogenic stimuli. The members of INK4 family, comprising p16(INK4a), p15(INK4b), p18(INK4c), and p19(INK4d), block the progression of the cell cycle by binding to either Cdk4 or Cdk6 and inhibiting the action of cyclin D. These INK4 proteins share a similar structure dominated by several ankyrin repeats. Although they appear to be structurally redundant and equally potent as inhibitors, the INK4 family members are differentially expressed during mouse development. The striking diversity in the pattern of expression of INK4 genes suggested that this family of cell cycle inhibitors might have cell lineage-specific or tissue-specific functions. The INK4 proteins are commonly lost or inactivated by mutations in diverse types of cancer, and they represent established or candidate tumor suppressors. Apart from their capacity to arrest cells in the G1-phase of the cell cycle they have been shown to participate in an increasing number of cellular processes. Given their emerging roles in fundamental physiological as well as pathological processes, it is interesting to explore the diverse roles for the individual INK4 family members in different functions other than cell cycle regulation. Extensive studies, over the past few years, uncover the involvement of INK4 proteins in senescence, apoptosis, DNA repair, and multistep oncogenesis. We will focus the discussion here on these unexpected issues.  相似文献   

14.
15.

Background

During evolution, organisms with renewable tissues have developed mechanisms to prevent tumorigenesis, including cellular senescence and apoptosis. Cellular senescence is characterized by a permanent cell cycle arrest triggered by both endogenous stress and exogenous stress. The p19INK4d, a member of the family of cyclin-dependent kinase inhibitors (INK4), plays an important role on cell cycle regulation and in the cellular DNA damage response. We hypothesize that p19INK4d is a potential factor involved in the onset and/or maintenance of the senescent state.

Methods

Senescence was confirmed by measuring the cell cycle arrest and the senescence-associated β-galactosidase activity. Changes in p19INK4d expression and localization during senescence were determined by Western blot and immunofluorescence assays. Chromatin condensation was measured by microccocal nuclease digestion and histone salt extraction.

Results

The data presented here show for the first time that p19INK4d expression is up-regulated by different types of senescence. Changes in senescence-associated hallmarks were driven by modulation of p19 expression indicating a direct link between p19INK4d induction and the establishment of cellular senescence. Following a senescence stimulus, p19INK4d translocates to the nucleus and tightly associates with chromatin. Moreover, reduced levels of p19INK4d impair senescence-related global genomic heterochromatinization. Analysis of p19INK4d mRNA and protein levels in tissues from differently aged mice revealed an up-regulation of p19INK4d that correlates with age.

Conclusion

We propose that p19INK4d participates in the cellular mechanisms that trigger senescence by contributing to chromatin compaction.

General significance

This study provides novel insights into the dynamics process of cellular senescence, a central tumor suppressive mechanism.  相似文献   

16.
The tumor suppressor p53 guides the cellular response to DNA damage mainly by regulating expression of target genes. The cyclin-dependent kinase inhibitor p21, which is induced by p53, can both arrest the cell cycle and inhibit apoptosis. Interestingly, p53-inducible DDB2 (damaged-DNA binding protein 2) promotes apoptosis by mediating p21 degradation after ultraviolet (UV)-induced DNA damage. Here, we developed an integrated model of the p53 network to explore how the UV-irradiated cell makes a decision between survival and death and how the activities of p21 and DDB2 are modulated. By numerical simulations, we found that p53 is activated progressively and the promoter selectivity of p53 depends on its concentration. For minor DNA damage, p53 settles at an intermediate level. p21 is induced by p53 to arrest the cell cycle via inhibiting E2F1 activity, allowing for DNA repair. The proapoptotic genes are expressed at low levels. For severe DNA damage, p53 undergoes a two-phase behavior and accumulates to high levels in the second phase. Consequently, those proapoptotic proteins accumulate remarkably. Bax activates the release of cytochrome c, while DDB2 promotes the degradation of p21, which leads to activation of E2F1 and induction of Apaf-1. Finally, the caspase cascade is activated to trigger apoptosis. We revealed that the downregulation of p21 is necessary for apoptosis induction and PTEN promotes apoptosis by amplifying p53 activation. This work demonstrates that how the dynamics of the p53 network can be finely regulated through feed-forward and feedback loops within the network and emphasizes the importance of p21 regulation in the DNA damage response.  相似文献   

17.
18.
19.
20.
INK4d-deficient mice are fertile despite testicular atrophy   总被引:4,自引:0,他引:4       下载免费PDF全文
The INK4 family of cyclin-dependent kinase (CDK) inhibitors includes four 15- to 19-kDa polypeptides (p16(INK4a), p15(INK4b), p18(INK4c), and p19(INK4d)) that bind to CDK4 and CDK6. By disrupting cyclin D-dependent holoenzymes, INK4 proteins prevent phosphorylation of the retinoblastoma protein and block entry into the DNA-synthetic phase of the cell division cycle. The founding family member, p16(INK4a), is a potent tumor suppressor in humans, whereas involvement, if any, of other INK4 proteins in tumor surveillance is less well documented. INK4c and INK4d are expressed during mouse embryogenesis in stereotypic tissue-specific patterns and are also detected, together with INK4b, in tissues of young mice. INK4a is expressed neither before birth nor at readily appreciable levels in young animals, but its increased expression later in life suggests that it plays some checkpoint function in response to cell stress, genotoxic damage, or aging per se. We used targeted gene disruption to generate mice lacking INK4d. These animals developed into adulthood, had a normal life span, and did not spontaneously develop tumors. Tumors did not arise at increased frequency in animals neonatally exposed to ionizing radiation or the carcinogen dimethylbenzanthrene. Mouse embryo fibroblasts, bone marrow-derived macrophages, and lymphoid T and B cells isolated from these animals proliferated normally and displayed typical lineage-specific differentiation markers. Males exhibited marked testicular atrophy associated with increased apoptosis of germ cells, although they remained fertile. The absence of tumors in INK4d-deficient animals demonstrates that, unlike INK4a, INK4d is not a tumor suppressor but is instead involved in spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号