首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
多倍化或全基因组复制(WGD)是物种多样性发生的重要驱动力。目前, 在蕨类、菊科以及豆科等类群丰富的植物中已多次报道全基因组复制事件, 而兰科(Orchidaceae)全基因组复制事件报道极少, 与其丰富的物种多样性存在矛盾, 推测与前期样本量小但类群跨度大的研究策略有关。选取染色体数目变异丰富且多样性较高的兜兰属(Paphiopedilum)为兰科植物代表类群, 基于共享数据库中4种兜兰的转录组数据, 采用同义替换率(Ks)、系统发生基因组学以及相对定年的方法分析兜兰属植物是否发生过全基因组复制事件。结果表明, 在4种兜兰中均检测到3次全基因组复制事件, 分别发生在110.17-119.77 Mya (WGD1)、60.95-74.19 Mya (WGD2)和38.19-45.85 Mya (WGD3)。其中, WGD3为新检测到的全基因组复制事件, 推测其发生在杓兰亚科(Cypripedioideae)与姐妹类群分化后, 兜兰属与姐妹类群分化之前。此外, 3次全基因组复制事件发生后优先保留的基因拷贝在功能上多与当时的环境胁迫响应相关, 推测全基因组复制提高了兜兰属植物祖先对当时极端环境变化的适应性。  相似文献   

2.
Gene duplication provides raw material for functional innovation, but gene duplicability varies considerably. Previous studies have found widespread asymmetrical sequence evolution between paralogs. However, it remains unknown whether the rate of evolution among paralogs affects their propensity of being retained after another round of whole-genome duplication (WGD). In this study, we investigated gene groups that have experienced two successive WGDs to determine which of two older duplicates with different evolutionary rates was more likely to retain both younger duplicates. To uncouple the measurement of evolutionary rates from any assignment of duplicate or singleton status, we measured the evolutionary rates of singleton genes in out-lineages but classified these singleton genes according to whether they are retained or not in a crown group of species. We found that genes that retained younger duplicates in the crown group of genomes were more constrained prior to the younger duplication event than those that failed to leave duplicates. In addition, we also found that the retained clades have more genes in out-lineages. Subsequent analyses showed that genes in the retained clades were expressed more broadly and highly than genes in the singleton clades. We concluded that the set of repeatedly retained genes after two WGDs is biased toward slowly evolving genes in angiosperms, suggesting that the potential of genes for both functional conservation and divergence likely affects their propensity of being retained after WGD in angiosperms.  相似文献   

3.
4.
A whole‐genome duplication (WGD) doubles the entire genomic content of a species and is thought to have catalysed adaptive radiation in some polyploid‐origin lineages. However, little is known about general consequences of a WGD because gene duplicates (i.e., paralogs) are commonly filtered in genomic studies; such filtering may remove substantial portions of the genome in data sets from polyploid‐origin species. We demonstrate a new method that enables genome‐wide scans for signatures of selection at both nonduplicated and duplicated loci by taking locus‐specific copy number into account. We apply this method to RAD sequence data from different ecotypes of a polyploid‐origin salmonid (Oncorhynchus nerka) and reveal signatures of divergent selection that would have been missed if duplicated loci were filtered. We also find conserved signatures of elevated divergence at pairs of homeologous chromosomes with residual tetrasomic inheritance, suggesting that joint evolution of some nondiverged gene duplicates may affect the adaptive potential of these genes. These findings illustrate that including duplicated loci in genomic analyses enables novel insights into the evolutionary consequences of WGDs and local segmental gene duplications.  相似文献   

5.
Pervasive hybridization and whole-genome duplications (WGDs) influenced genome evolution in several eukaryotic lineages. Although frequent and recurrent hybridizations may result in reticulate phylogenies, the evolutionary events underlying these reticulations, including detailed structure of the ancestral diploid and polyploid genomes, were only rarely reconstructed. Here, we elucidate the complex genomic history of a monophyletic clade from the mustard family (Brassicaceae), showing contentious relationships to the early-diverging clades of this model plant family. Genome evolution in the crucifer tribe Biscutelleae (∼60 species, 5 genera) was dominated by pervasive hybridizations and subsequent genome duplications. Diversification of an ancestral diploid genome into several divergent but crossable genomes was followed by hybridizations between these genomes. Whereas a single genus (Megadenia) remained diploid, the four remaining genera originated by allopolyploidy (Biscutella, Lunaria, Ricotia) or autopolyploidy (Heldreichia). The contentious relationships among the Biscutelleae genera, and between the tribe and other early diverged crucifer lineages, are best explained by close genomic relatedness among the recurrently hybridizing ancestral genomes. By using complementary cytogenomics and phylogenomics approaches, we demonstrate that the origin of a monophyletic plant clade can be more complex than a parsimonious assumption of a single WGD spurring postpolyploid cladogenesis. Instead, recurrent hybridization among the same and/or closely related parental genomes may phylogenetically interlink diploid and polyploid genomes despite the incidence of multiple independent WGDs. Our results provide new insights into evolution of early-diverging Brassicaceae lineages and elucidate challenges in resolving the contentious relationships within and between land plant lineages with pervasive hybridization and WGDs.  相似文献   

6.
7.
在上个世纪最后的 2 0年里 ,系统学家应用形态性状对种子植物进行了大量的分支分析。其结果显示灭绝的五柱木属加上灭绝的本内苏铁目及尚存的买麻藤目是被子植物的姊妹群 ,形成一个强支 ,称之为生花植物支。生花植物假说对探讨被子植物起源有着重要影响 ,它激发人们讨论被子植物起源时间可能要提前到三叠纪甚至石炭纪 ,除了支持原有的真花学说外 ,还提出新恩格勒学说。但是 ,近年来对现存种子植物进行分子系统学研究的结果是 :(1)拒绝接受生花植物概念 ;(2 )买麻藤目并不是被子植物的姊妹群而是松柏目的姊妹群 ,甚至网结于松柏类而成为松科的姊妹群。这些结果并不使人惊讶 ,因为对探讨像包含许多灭绝类群的种子植物系统 ,决不可能是仅仅单独应用现代类群资料所能完成的。假如生花植物支是成立的 ,但其名称以AGPB支代替生花植物支可能较为合理。  相似文献   

8.
It has been hypothesized that two successive rounds of whole-genome duplication (WGD) in the stem lineage of vertebrates provided genetic raw materials for the evolutionary innovation of many vertebrate-specific features. However, it has seldom been possible to trace such innovations to specific functional differences between paralogous gene products that derive from a WGD event. Here, we report genomic evidence for a direct link between WGD and key physiological innovations in the vertebrate oxygen transport system. Specifically, we demonstrate that key globin proteins that evolved specialized functions in different aspects of oxidative metabolism (hemoglobin, myoglobin, and cytoglobin) represent paralogous products of two WGD events in the vertebrate common ancestor. Analysis of conserved macrosynteny between the genomes of vertebrates and amphioxus (subphylum Cephalochordata) revealed that homologous chromosomal segments defined by myoglobin + globin-E, cytoglobin, and the α-globin gene cluster each descend from the same linkage group in the reconstructed proto-karyotype of the chordate common ancestor. The physiological division of labor between the oxygen transport function of hemoglobin and the oxygen storage function of myoglobin played a pivotal role in the evolution of aerobic energy metabolism, supporting the hypothesis that WGDs helped fuel key innovations in vertebrate evolution.  相似文献   

9.
We explored the usefulness of mtDNA data in assessing phylogenetic relationships within the Ascidiacea. Although ascidians are a crucial group in studies of deuterostome evolution and the origin of chordates, little molecular work has been done to ascertain the evolutionary relationships within the class, and in the studies performed to date the key group Aplousobranchiata has not been adequately represented. We present a phylogenetic analysis based on mitochondrial cytochrome c oxidase subunit I (COI) sequences of 37 ascidian species, mainly Aplousobranchiata (26 species). Our data retrieve the main groups of ascidians, although Phlebobranchiata appeared paraphyletic in some analyses. Aplousobranch ascidians consistently appeared as a derived group, suggesting that their simple branchial structure is not a pleisiomorphic feature. Relationships between the main groups of ascidians were not conclusively determined, the sister group of Aplousobranchiata was the Stolidobranchiata or the Phlebobranchiata, depending on the analysis. Therefore, our data could not confirm an Enterogona clade (Aplousobranchiata+Phlebobranchiata). All of the tree topologies confirmed previous ideas, based on morphological and biochemical characters, suggesting that Cionidae and Diazonidae are members of the clade Aplousobranchiata, with Cionidae occupying a basal position within them in our analyses. Within the Aplousobranchiata, we found some stable clades that provide new data on the evolutionary relationships within this large group of ascidians, and that may prompt a re-evaluation of some morphological characters.  相似文献   

10.
Paramecium has long been a model eukaryote. The sequence of the Paramecium tetraurelia genome reveals a history of three successive whole-genome duplications (WGDs), and the sequences of P. biaurelia and P. sexaurelia suggest that these WGDs are shared by all members of the aurelia species complex. Here, we present the genome sequence of P. caudatum, a species closely related to the P. aurelia species group. P. caudatum shares only the most ancient of the three WGDs with the aurelia complex. We found that P. caudatum maintains twice as many paralogs from this early event as the P. aurelia species, suggesting that post-WGD gene retention is influenced by subsequent WGDs and supporting the importance of selection for dosage in gene retention. The availability of P. caudatum as an outgroup allows an expanded analysis of the aurelia intermediate and recent WGD events. Both the Guanine+Cytosine (GC) content and the expression level of preduplication genes are significant predictors of duplicate retention. We find widespread asymmetrical evolution among aurelia paralogs, which is likely caused by gradual pseudogenization rather than by neofunctionalization. Finally, cases of divergent resolution of intermediate WGD duplicates between aurelia species implicate this process acts as an ongoing reinforcement mechanism of reproductive isolation long after a WGD event.  相似文献   

11.
Macaranga and Mallotus (Euphorbiaceae s.s.) are two closely related, large paleo(sub)tropical genera. To investigate the phylogenetic relationships between and within them and to determine the position of related genera belonging to the subtribe Rottlerinae, we sequenced one plastid (trnL-F) and three nuclear (ITS, ncpGS, phyC) markers for species representative of these genera. The analyses demonstrated the monophyly of Macaranga and the paraphyly of Mallotus and revealed three highly supported main clades. The genera Cordemoya and Deuteromallotus and the Mallotus sections Hancea and Oliganthae form a basal Cordemoya s.l. clade. The two other clades, the Macaranga clade and the Mallotus s.s. clade (the latter with Coccoceras, Neotrewia, Octospermum, and Trewia), are sister groups. In the Macaranga clade, two basal lineages (comprising mostly sect. Pseudorottlera) and a crown group with three geographically homogenous main clades were identified. The phylogeny of the Mallotus s.s. clade is less clear because of internal conflict in all four data sets. Many of the sections and informal infrageneric groups of Macaranga and Mallotus do not appear to be monophyletic. In both the Macaranga and Mallotus s.s. clades, the African and/or Madagascan taxa are nested in Asian clades, suggesting migrations or dispersals from Asia to Africa and Madagascar.  相似文献   

12.
The fascinating and often unlikely shell shapes in the terrestrial micromollusc family Diplommatinidae (Gastropoda: Caenogastropoda) provide a particularly attractive set of multiple morphological traits to investigate evolutionary patterns of shape variation. Here, a molecular phylogenetic reconstruction, based on five genes and 2700 bp, was undertaken for this family, integrated with ancestral state reconstruction and phylogenetic PCA of discrete and quantitative traits, respectively. We found strong support for the Diplommatininae as a monophyletic group, separating the Cochlostomatidae into a separate family. Five main clades appear within the Diplommatininae, corresponding with both coiling direction and biogeographic patterns. A Belau clade (A) with highly diverse (but always sinistral) morphology comprised Hungerfordia, Palaina, and some Diplommatina. Arinia (dextral) and Opisthostoma (sinistroid) are sister groups in clade B. Clade C and D solely contain sinistral Diplommatina that are robust and little ornamented (clade C) or slender and sculptured (clade D). Clade E is dextral but biogeographically diverse with species from all sampled regions save the Caroline Islands. Adelopoma, Diplommatina, Palaina, and Hungerfordia require revision to allow taxonomy to reflect phylogeny, whereas Opisthostoma is clearly monophyletic. Ancestral state reconstruction suggests a sinistral origin for the Diplommatinidae, with three reversals to dextrality.  相似文献   

13.
Animals are evolutionarily related to fungi and to the predominantly unicellular protozoan phylum Choanozoa, together known as opisthokonts. To establish the sequence of events when animals evolved from unicellular ancestors, and understand those key evolutionary transitions, we need to establish which choanozoans are most closely related to animals and also the evolutionary position of each choanozoan group within the opisthokont phylogenetic tree. Here we focus on Ministeria vibrans, a minute bacteria-eating cell with slender radiating tentacles. Single-gene trees suggested that it is either the closest unicellular relative of animals or else sister to choanoflagellates, traditionally considered likely animal ancestors. Sequencing thousands of Ministeria protein genes now reveals about 14 with domains of key significance for animal cell biology, including several previously unknown from deeply diverging Choanozoa, e.g. domains involved in hedgehog, Notch and tyrosine kinase signaling or cell adhesion (cadherin). Phylogenetic trees using 78 proteins show that Ministeria is not sister to animals or choanoflagellates (themselves sisters to animals), but to Capsaspora, another protozoan with thread-like (filose) tentacles. The Ministeria/Capsaspora clade (new class Filasterea) is sister to animals and choanoflagellates, these three groups forming a novel clade (filozoa) whose ancestor presumably evolved filose tentacles well before they aggregated as a periciliary collar in the choanoflagellate/sponge common ancestor. Our trees show ichthyosporean choanozoans as sisters to filozoa; a fusion between ubiquitin and ribosomal small subunit S30 protein genes unifies all holozoa (filozoa plus Ichthyosporea), being absent in earlier branching eukaryotes. Thus, several successive evolutionary innovations occurred among their unicellular closest relatives prior to the origin of the multicellular body-plan of animals.  相似文献   

14.
Whole-genome duplications (WGDs) have occurred in many eukaryotic lineages. However, the underlying evolutionary forces and molecular mechanisms responsible for the long-term retention of gene duplicates created by WGDs are not well understood. We employ a population-genomic approach to understand the selective forces acting on paralogs and investigate ongoing duplicate-gene loss in multiple species of Paramecium that share an ancient WGD. We show that mutations that abolish protein function are more likely to be segregating in retained WGD paralogs than in single-copy genes, most likely because of ongoing nonfunctionalization post-WGD. This relaxation of purifying selection occurs in only one WGD paralog, accompanied by the gradual fixation of nonsynonymous mutations and reduction in levels of expression, and occurs over a long period of evolutionary time, “marking” one locus for future loss. Concordantly, the fitness effects of new nonsynonymous mutations and frameshift-causing indels are significantly more deleterious in the highly expressed copy compared with their paralogs with lower expression. Our results provide a novel mechanistic model of gene duplicate loss following WGDs, wherein selection acts on the sum of functional activity of both duplicate genes, allowing the two to wander in expression and functional space, until one duplicate locus eventually degenerates enough in functional efficiency or expression that its contribution to total activity is too insignificant to be retained by purifying selection. Retention of duplicates by such mechanisms predicts long times to duplicate-gene loss, which should not be falsely attributed to retention due to gain/change in function.  相似文献   

15.
Neale Monks 《Palaeontology》2002,45(4):689-707
The Hamitidae are a family of mid–Cretaceous heteromorph ammonites including lineages leading to four other families. Problems are outlined in trying to describe the phylogeny of completely extinct groups such as these heteromorph ammonites using the existing cladistic terminology, which is largely concerned with extant taxa and their ancestors. To solve these problems, two new terms are proposed: †crown groups and †stem groups, which are equivalent to crown and stem groups in terms of the evolutionary history of a clade, but are not defined on the basis of extant taxa. Instead they are defined by the topology of the phylogenetic tree, the †crown group being a clade defined by synapomorphies but which gave rise to no descendants. A †stem group is a branch of a phylogenetic tree which comprises the immediate sister groups of a given †crown group but is not itself a clade. Examples of these terms are described here with reference to the phylogeny of the Hamitidae and their descendants. The Hamitidae are paraphyletic and form †stem groups to a number of †crown groups, namely the Anisoceratidae, Baculitidae, Scaphitidae, and Turrilitidae. The definitions of the genera and subgenera are refined with respect to the type species and the clades within which they occur, and four new genera are described: Eohamites , Helicohamites , Sziveshamites , and Planohamites .  相似文献   

16.
17.
The origin of amniotes was a key event in vertebrate evolution, enabling tetrapods to break their ties with water and invade terrestrial environments. Two pivotal clades of early tetrapods, the diadectomorphs and the seymouriamorphs, have played an unsurpassed role in debates about the ancestry of amniotes for over a century, but their skeletal morphology has provided conflicting evidence for their affinities. Using high-resolution X-ray microcomputed tomography, we reveal the three-dimensional architecture of the well preserved endosseous labyrinth of the inner ear in representative species belonging to both groups. Data from the inner ear are coded in a new cladistic matrix of stem and primitive crown amniotes. Both maximum parsimony and Bayesian inference analyses retrieve seymouriamorphs as derived non-crown amniotes and diadectomorphs as sister group to synapsids. If confirmed, this sister group relationship invites re-examination of character polarity near the roots of the crown amniote radiation. Major changes in the endosseous labyrinth and adjacent braincase regions are mapped across the transition from non-amniote to amniote tetrapods and include: a ventral shift of the cochlear recess relative to the vestibule and the semicircular canals; cochlear recess (primitively housed exclusively within the opisthotic) accommodated within both the prootic and the opisthotic; development of a distinct fossa subarcuata. The inner ear of seymouriamorphs foreshadows conditions of more derived groups, whereas that of diadectomorphs shows a mosaic of plesiomorphic and apomorphic traits, some of which are unambiguously amniote-like, including a distinct and pyramid-like cochlear recess.  相似文献   

18.
Molecular Biology - Whole-genome duplication (WGD), or polyploidy, increases the amount of genetic information in the cell. WGDs of whole organisms are found in all branches of eukaryotes and act...  相似文献   

19.
Constraining the origin of animal groups is allowed, to some extent, by discoveries of Cambrian Lagerstätten that preserve both mineralizing and nonmineralizing organisms. A new species is reported here of the Cambrian arthropod Skania, which bears an exoskeleton that shares homologies with the Neoproterozoic (Ediacaran) organism Parvancorina and firmly establishes a Precambrian root for arthropods. A new monophyletic group, Parvancorinomorpha, is proposed as the first clade within the arthropod crown group demonstrably ranging across the Neoproterozoic–Paleozoic transition. The Parvancorinomorpha is interpreted to be the sister group of the Arachnomorpha. Incipient cephalization in Skania and related genera represents a step in the progression toward division of a cephalon from a large posterior trunk as shown in Cambrian arachnomorphs such as naraoiids and the addition of a pygidium and thoracic tergites as shown in the arachnomorph clade basal to trilobites. This evidence can serve as a new calibration point for estimating the divergence time for the last common ancestor of arthropods and priapulids based on molecular clock methods.  相似文献   

20.
The phylogenetic relationships of the early Tertiary Primoscenidae and Sylphornithidae are, for the first time, evaluated in a cladistic context. Both taxa include small arboreal birds with a permanently (Primoscenidae) or facultatively (Sylphornithidae) retroverted fourth toe. Primoscenidae were hitherto considered to be most closely related to either woodpeckers and allies (Piciformes) or to songbirds (Passeriformes), whereas the Sylphornithidae were classified into the roller-kingfisher-hornbill assemblage (Coraciiformes). Analysis of 56 morphological characters supports monophyly of a clade including Sylphornithidae and crown group Piciformes and results in sister group relationship between Passeriformes and a clade including Primoscenidae and the early Miocene Zygodactylidae. However, an analysis in which the search was constrained to trees supporting piciform affinities of the Primoscenidae resulted in trees that were only five steps longer than those from the primary analysis. The character evidence for each hypothesis is discussed. The systematic position of the Primoscenidae appears to be connected to the identity of the sister taxon of crown group Piciformes, as the primary search indicated Upupiformes (hoopoes and wood-hoopoes) and Bucerotiformes (hornbills) as sister taxa of Piciformes, whereas the constrained search resulted in sister group relationship between Coliiformes (mousebirds) and Piciformes. Songbirds do not show the slightest indication of a zygodactyl foot but in these birds the hindtoe is greatly elongated, an alternative strategy to increase the grasping capabilities of the foot. If Passeriformes are indeed the sister group of the clade (Primoscenidae + Zygodactylidae), these birds would be an example that, in closely related taxa, selection towards the same functional demands can result in entirely different morphological specializations.Communicated by F. Bairlein  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号