首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
2.
3.
Ma W  Deng Y  Mi H 《Current microbiology》2008,56(2):189-193
A highly active NADPH dehydrogenase supercomplex, which is essential for cyclic electron transport around photosystem I (cyclic PSI) and respiration, was newly identified in cyanobacteria. Synechocystis sp. strain PCC 6803 cells were treated with exogenous glucose (Glc) or 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU); subsequently, active staining of NADPH-nitroblue tetrazolium oxidoreductase, western blot, and the initial rate of P700+ dark reduction were assessed in the cyanobacterium at several time points. The expression and enzyme activity levels of NADPH dehydrogenase supercomplex were gradually inhibited and closely associated with the decrease in the rate of cyclic PSI accompanying the addition of exogenous Glc to the cultures. In contrast, the activity levels were significantly stimulated but did not cause an increase in the rate of cyclic PSI as expected in the presence of DCMU. Since Glc results in the partial reduction of the plastoquinone (PQ) pool while DCMU results in the overoxidation of the PQ pool, the present results demonstrate that the expression and activity of NADPH dehydrogenase supercomplex are under the influence of the redox control of the PQ pool while the operation of cyclic PSI as mediated by this supercomplex requires an appropriate redox poise of the PQ pool.  相似文献   

4.
5.
We examined the effect of manipulating photosystem II (PSII) redox poise on respiratory flux in leaves of Arabidopsis thaliana. Measurements were made on wild-type (WT) plants and npq4 mutant plants deficient in non-photochemical quenching (NPQ). Two experiments were carried out. In the first experiment, WT and mutant warm-grown plants were exposed to three different irradiance regimes [75, 150 and 300 micromol photosynthetically active radiation (PAR)], and leaf dark respiration was measured in conjunction with PSII redox poise. In the second experiment, WT and mutant warm-grown plants were shifted to 5 degrees C and 75, 150 or 300 micromol PAR, and dark respiration was measured alongside PSII redox poise in cold-treated and cold-developed leaves. Despite significant differences in PSII redox poise between genotypes and irradiance treatments, neither genotype nor growth irradiance had any effect upon the rate of respiration in warm-grown, cold-treated or cold-developed leaves. We conclude that changes in PSII redox poise, at least within the range experienced here, have no direct impacts on rates of leaf dark respiration, and that the respiratory cold acclimation response is unrelated to changes in chloroplast redox poise.  相似文献   

6.
We investigated the role of a cold-inducible and redox-regulated RNA helicase, CrhR, in the energy redistribution and adjustment of stoichiometry between photosystem I (PSI) and photosystem II (PSII), at low temperature in Synechocystis sp. PCC 6803. The results suggest that during low temperature incubation, i.e., when cells are shifted from 34°C to 24°C, wild type cells exhibited light-induced state transitions, whereas the mutant deficient in CrhR failed to perform the same. At low temperature, wild type cells maintained the plastoquinone (PQ) pool in the reduced state due to enhanced respiratory electron flow to the PQ pool, whereas in ?crhR mutant cells the PQ pool was in the oxidized state. Wild type cells were in state 2 and ?crhR cells were locked in state 1 at low temperature. In both wild type and ?crhR cells, a fraction of PSI trimers were changed to PSI monomers. However, in ?crhR cells, the PSI trimer content was significantly decreased. Expression of photosystem I genes, especially the psaA and psaB, was strongly down-regulated due to oxidation of downstream components of PQ in ?crhR cells at low temperature. We demonstrated that changes in the low temperature-induced energy redistribution and regulation of photosystem stoichiometry are acclimatization responses exerted by Synechocystis cells, essentially regulated by the RNA helicase, CrhR, at low temperature.  相似文献   

7.
The question of plastoquinone (PQ) concentration and its stoichiometry to photosystem I (PSI) and PSII in spinach chloroplasts is addressed here. The results from three different experimental approaches were compared. (a) Quantitation from the light-induced absorbance change at 263 nm (A263) yielded the following ratios (mol:mol); Chl:PQ=70:1, PQ:PSI=9:1 and PQ:PSII=7:1. The kinetics of PQ photoreduction were a monophasic but non-exponential function of time. The deviation of the semilogarithmic plots from linearity reflects the cooperativity of several electron transport chains at the PQ pool level. (b) Estimates from the area over the fluorescence induction curve (Afl) tend to exaggerate the PQ pool size because of electron transfer via PSI to molecular oxygen (Mehler reaction) resulting in the apparent increase of the pool of electron acceptors. The reliability of the Afl method is increased substantially upon plastocyanin inhibition by KCN. (c) Quantitation of the number of electrons removed from PQH2 by PSI, either under far-red excitation or after the addition of DCMU to preilluminated chloroplasts, is complicated due to the competitive loss of electrons from PQH2 to molecular oxygen. The latter is biphasic reaction occurring with half-times of about 2 s (30–40% of PQH2) and of about 60 s (60–70% of PQH2).Abbreviations Afl area over the fluorescence induction curve - Chl chlorophyll - Cyt cytochrome - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PQ plastoquinone - PS photosystem - P700 reaction center of PSI - Q primary quinone acceptor of PSII - Tricine N-tris (hydroxymethyl) methyl glycine - Triton X-100 octyl phenoxy polyethoxyethanol  相似文献   

8.
9.
10.
To assess the role of redox state of photosystem II (PSII) acceptor side electron carriers in PSII photochemical activity, we studied sub-millisecond fluorescence kinetics of the wild type Synechocystis PCC 6803 and its mutants with natural variability in the redox state of the plastoquinone (PQ) pool. In cyanobacteria, dark adaptation tends to reduce PQ pool and induce a shift of the cyanobacterial photosynthetic apparatus to State 2, whereas illumination oxidizes PQ pool, leading to State 1 (Mullineaux, C. W., and Holzwarth, A. R. (1990) FEBS Lett., 260, 245-248). We show here that dark-adapted Ox mutant with naturally reduced PQ is characterized by slower QA reoxidation and O2 evolution rates, as well as lower quantum yield of PSII primary photochemical reactions (Fv/Fm) as compared to the wild type and SDH–mutant, in which the PQ pool remains oxidized in the dark. These results indicate a large portion of photochemically inactive PSII reaction centers in the Ox mutant after dark adaptation. While light adaptation increases Fv/Fm in all tested strains, indicating PSII activation, by far the greatest increase in Fv/Fm and O2 evolution rates is observed in the Ox mutant. Continuous illumination of Ox mutant cells with low-intensity blue light, that accelerates QA reoxidation, also increases Fv/Fm and PSII functional absorption cross-section (590 nm); this effect is almost absent in the wild type and SDH–mutant. We believe that these changes are caused by the reorganization of the photosynthetic apparatus during transition from State 2 to State 1. We propose that two processes affect the PSII activity during changes of light conditions: 1) reversible inactivation of PSII, which is associated with the reduction of electron carriers on the PSII acceptor side in the dark, and 2) PSII activation under low light related to the increase in functional absorption cross-section at 590 nm.  相似文献   

11.
Joly D  Carpentier R 《Biochemistry》2007,46(18):5534-5541
The effect of exogenous plastoquinone (PQ) on the different deexcitation pathways of photosystem I (PSI) was investigated. Addition of oxidized decyl-plastoquinone (dPQ) and PQ-2 strongly quenched the chlorophyll (Chl) emission spectra of PSI submembrane fractions over all wavelengths. This quenching increased with the concentration of exogenous PQ added and followed the modified Stern-Volmer law. The Stern-Volmer constants found for dPQ and PQ-2 were 1.25 x 10(6) M-1 and 0.55 x 10(6) M-1, respectively, and the fraction of fluorescence accessible to the quencher was 0.7 for both exogenous PQ. dPQ and PQ-2 also retarded the P700 photooxidation measured under limiting actinic light irradiances. Photoacoustic measurements showed that addition of dPQ increased the heat dissipation and decreased the photochemical capacity of PSI. From these results, exogenous oxidized PQ were shown to efficiently quench the Chl excited state in the PSI antenna and change the balance between Chl deexcitation pathways. Moreover, reduction of the endogenous PQ pool in whole thylakoid membranes by NADPH increased PSI fluorescence by 65%, indicating the importance of the redox state of the PQ pool on PSI energy dissipation.  相似文献   

12.
PsbW, a 6.1-kDa low-molecular-weight protein, is exclusive to photosynthetic eukaryotes, and associates with the photosystem II (PSII) protein complex. In vivo and in vitro comparison of Arabidopsis thaliana wild-type plants with T-DNA insertion knock-out mutants completely lacking the PsbW protein, or with antisense inhibition plants exhibiting decreased levels of PsbW, demonstrated that the loss of PsbW destabilizes the supramolecular organization of PSII. No PSII-LHCII supercomplexes could be detected or isolated in the absence of the PsbW protein. These changes in macro-organization were accompanied by a minor decrease in the chlorophyll fluorescence parameter F(V) /F(M) , a strongly decreased PSII core protein phosphorylation and a modification of the redox state of the plastoquinone (PQ) pool in dark-adapted leaves. In addition, the absence of PsbW protein led to faster redox changes in the PQ pool, i.e. transitions from state 1 to state 2, as measured by changes in stationary fluorescence (F(S) ) kinetics, compared with the wild type. Despite these dramatic effects on macromolecular structure, the transgenic plants exhibited no significant phenotype under normal growth conditions. We suggest that the PsbW protein is located close to the minor antenna of the PSII complex, and is important for the contact and stability between several PSII-LHCII supercomplexes.  相似文献   

13.
钟罗宝  陈谷  任丹丹 《微生物学报》2009,49(11):1468-1476
摘要:拟南芥中近来发现的定位于叶绿体的膜嵌合金属蛋白酶EGY1影响叶绿体发育与脂肪酸合成,经生物信息学分析,集胞藻PCC6803 (Synechocystis sp. PCC6803)中slr0643、sll0862基因编码同源蛋白。【目的】为了鉴定这两个基因的功能,【方法】本文通过同源重组插入卡那霉素抗性基因、切断目的基因,分别构建了slr0643::km和sll0862::km两种突变体,检测突变体的生理生化表型。【结果】在30℃,20 μE/m2s自养培养下,slr0643::km与野生型相比,早期  相似文献   

14.
Light and temperature affect state transitions through changes in the plastoquinone (PQ) redox state in photosynthetic organisms. We demonstrated that light and/or heat treatment induced preferential photosystem (PS) I excitation by binding light-harvesting complex II (LHCII) proteins. The photosystem of wheat was in state 1 after dark overnight treatment, wherein PQ was oxidized and most of LHCII was not bound to PSI. At the onset of the light treatment [25 °C in the light (100 µmol photons m?2 s?1)], two major LHCIIs, Lhcb1 and Lhcb2 were phosphorylated, and the PSI–LHCII supercomplex formed within 5 min, which coincided with an increase in the PQ oxidation rate. Heat treatment at 40 °C of light-adapted wheat led to further LHCII protein phosphorylation of, resultant cyclic electron flow promotion, which was accompanied by ultrafast excitation of PSI and structural changes of thylakoid membranes, thereby protecting PSII from heat damage. These results suggest that LHCIIs are required for the functionality of wheat plant PSI, as it keeps PQ oxidized by regulating photochemical electron flow, thereby helping acclimation to environmental changes.  相似文献   

15.
The purpose of this study was to explore how the mitochondrial AOX (alternative oxidase) pathway alleviates photoinhibition in Rumex K-1 leaves. Inhibition of the AOX pathway decreased the initial activity of NADP-malate dehydrogenase (EC 1.1.1.82, NADP-MDH) and the pool size of photosynthetic end electron acceptors, resulting in an over-reduction of the photosystem I (PSI) acceptor side. The over-reduction of the PSI acceptor side further inhibited electron transport from the photosystem II (PSII) reaction centers to the PSII acceptor side as indicated by an increase in V(J) (the relative variable fluorescence at J-step), causing an imbalance between photosynthetic light absorption and energy utilization per active reaction center (RC) under high light, which led to the over-excitation of the PSII reaction centers. The over-reduction of the PSI acceptor side and the over-excitation of the PSII reaction centers enhanced the accumulation of reactive oxygen species (ROS), which inhibited the repair of the photodamaged PSII. However, the inhibition of the AOX pathway did not change the level of photoinhibition under high light in the presence of the chloroplast D1 protein synthesis inhibitor chloramphenicol, indicating that the inhibition of the AOX pathway did not accelerate the photodamage to PSII directly. All these results suggest that the AOX pathway plays an important role in the protection of plants against photoinhibition by minimizing the inhibition of the repair of the photodamaged PSII through preventing the over-production of ROS.  相似文献   

16.
We have taken a genetic approach to eliminating the presence of photosystem I (PSI) in site-directed mutants of photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803. By selecting under light-activated heterotrophic conditions, we have inactivated the psaA-psaB operon encoding the PSI reaction center proteins in cells containing deletions of the three psbA genes. We have also introduced deletions into both copies of psbD in a strain containing a mutation that inactivates psaA (ADK9). These strains, designated D1-/PSI- and D2-/PSI-, may serve as recipient strains for the incorporation of site-directed mutations in either psbA2 or psbD1. The characterization of these cells, which lack both PSI and PSII, is described.  相似文献   

17.
We investigated the organization of photosystem II (PSII) in agranal bundle sheath thylakoids from a C(4) plant maize. Using blue native/SDS-PAGE and single particle analysis, we show for the first time that PSII in the bundle sheath (BS) chloroplasts exists in a dimeric form and forms light-harvesting complex II (LHCII).PSII supercomplexes. We also demonstrate that a similar set of photosynthetic membrane complexes exists in mesophyll and agranal BS chloroplasts, including intact LHCI.PSI supercomplexes, PSI monomers, PSII core dimers, PSII monomers devoid of CP43, LHCII trimers, LHCII monomers, ATP synthase, and cytochrome b(6)f complex. Fluorescence functional measurements clearly indicate that BS chloroplasts contain PSII complexes that are capable of performing charge separation and are efficiently sensitized by the associated LHCII. We identified a fraction of LHCII present within BS thylakoids that is weakly energetically coupled to the PSII reaction center; however, the majority of BS LHCII is shown to be tightly connected to PSII. Overall, we demonstrate that organization of the photosynthetic apparatus in BS agranal chloroplasts of a model C(4) plant is clearly distinct from that of the stroma lamellae of the C(3) plants. In particular, supramolecular organization of the dimeric LHCII.PSII in the BS thylakoids strongly suggests that PSII in the BS agranal membranes may donate electrons to PSI. We propose that the residual PSII activity may supply electrons to poise cyclic electron flow around PSI and prevent PSI overoxidation, which is essential for the CO(2) fixation in BS cells, and hence, may optimize ATP production within this compartment.  相似文献   

18.
The unicellular Cyanobacterium Cyanothece sp. ATCC 51142, grown under alternating 12-h light/12-h dark conditions, temporally separated N2 fixation from photosynthesis. The regulation of photosynthesis was studied using fluorescence spectra and kinetics to determine changes in state transitions and photosystem organization. The redox poise of the plastoquinone (PQ) pool appeared to be central to this regulation. Respiration supported N2 fixation by oxidizing carbohydrate granules, but reduced the PQ pool. This induced state 2 photosystem II monomers and lowered the capacity for O2 evolution. State 2 favored photosystem I trimers and cyclic electron transport, which could stimulate N2 fixation; the stimulation suggested an ATP limitation to N2 and CO2 fixation. The exhaustion of carbohydrate granules at around 6 h in the dark resulted in reduced respiratory electron flow, which led to a more oxidized PQ pool and produced a sharp transition from state 2 to state 1. This transient state 1 returned to state 2 in the remaining hours of darkness. In the light phase, photosystem II dimerization correlated with increased phycobilisome coupling to photosystem II (state 1) and increased rates of O2 evolution. However, dark adaptation did not guarantee state 2 and left photosystem I centers in a mostly monomeric state at certain times.  相似文献   

19.
In photosynthesis in chloroplasts and cyanobacteria, redox control of thylakoid protein phosphorylation regulates distribution of absorbed excitation energy between the two photosystems. When electron transfer through chloroplast photosystem II (PSII) proceeds at a rate higher than that through photosystem I (PSI), chemical reduction of a redox sensor activates a thylakoid protein kinase that catalyses phosphorylation of light-harvesting complex II (LHCII). Phosphorylation of LHCII increases its affinity for PSI and thus redistributes light-harvesting chlorophyll to PSI at the expense of PSII. This short-term redox signalling pathway acts by means of reversible, post-translational modification of pre-existing proteins. A long-term equalisation of the rates of light utilisation by PSI and PSII also occurs: by means of adjustment of the stoichiometry of PSI and PSII. It is likely that the same redox sensor controls both state transitions and photosystem stoichiometry. A specific mechanism for integration of these short- and long-term adaptations is proposed. Recent evidence shows that phosphorylation of LHCII causes a change in its 3-D structure, which implies that the mechanism of state transitions in chloroplasts involves control of recognition of PSI and PSII by LHCII. The distribution of LHCII between PSII and PSI is therefore determined by the higher relative affinity of phospho-LHCII for PSI, with lateral movement of the two forms of the LHCII being simply a result of their diffusion within the membrane plane. Phosphorylation-induced dissociation of LHCII trimers may induce lateral movement of monomeric phospho-LHCII, which binds preferentially to PSI. After dephosphorylation, monomeric, unphosphorylated LHCII may trimerize at the periphery of PSII.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号