首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

The production of triploid banana and plantain (Musa spp.) cultivars with improved characteristics (e.g. greater disease resistance or higher yield), while still preserving the main features of current popular cultivars (e.g. taste and cooking quality), remains a major challenge for Musa breeders. In this regard, breeders require a sound knowledge of the lineage of the current sterile triploid cultivars, to select diploid parents that are able to transmit desirable traits, together with a breeding strategy ensuring final triploidization and sterility. Highly polymorphic single sequence repeats (SSRs) are valuable markers for investigating phylogenetic relationships.

Methods

Here, the allelic distribution of each of 22 SSR loci across 561 Musa accessions is analysed.

Key Results and Conclusions

We determine the closest diploid progenitors of the triploid ‘Cavendish’ and ‘Gros Michel’ subgroups, valuable information for breeding programmes. Nevertheless, in establishing the likely monoclonal origin of the main edible triploid banana subgroups (i.e. ‘Cavendish’, ‘Plantain’ and ‘Mutika-Lujugira’), we postulated that the huge phenotypic diversity observed within these subgroups did not result from gamete recombination, but rather from epigenetic regulations. This emphasizes the need to investigate the regulatory mechanisms of genome expression on a unique model in the plant kingdom. We also propose experimental standards to compare additional and independent genotyping data for reference.  相似文献   

2.
This is the first report of targeted development of B genome microsatellite markers in Musa. A total of 44 sequences with microsatellites were isolated from an enriched library of Musa balbisiana cv. ‘Tani’ (BB genome). Of these, 25 were polymorphic when screened on 14 diverse diploid and triploid Musa accessions. The number of alleles detected by each marker ranged between one and seven. All 25 microsatellite markers generated amplification products in all species and genome complements. These new microsatellite markers fill an important gap for diversity assessment and linkage mapping studies in plantain (AAB) and cooking banana (ABB).  相似文献   

3.
4.
The production of bananas is threatened by rapid spreading of various diseases and adverse environmental conditions. The preservation and characterization of banana diversity is essential for the purposes of crop improvement. The world''s largest banana germplasm collection maintained at the Bioversity International Transit Centre (ITC) in Belgium is continuously expanded by new accessions of edible cultivars and wild species. Detailed morphological and molecular characterization of the accessions is necessary for efficient management of the collection and utilization of banana diversity. In this work, nuclear DNA content and genomic distribution of 45S and 5S rDNA were examined in 21 diploid accessions recently added to ITC collection, representing both sections of the genus Musa. 2C DNA content in the section Musa ranged from 1.217 to 1.315 pg. Species belonging to section Callimusa had 2C DNA contents ranging from 1.390 to 1.772 pg. While the number of 45S rDNA loci was conserved in the section Musa, it was highly variable in Callimusa species. 5S rRNA gene clusters were found on two to eight chromosomes per diploid cell. The accessions were genotyped using a set of 19 microsatellite markers to establish their relationships with the remaining accessions held at ITC. Genetic diversity done by SSR genotyping platform was extended by phylogenetic analysis of ITS region. ITS sequence data supported the clustering obtained by SSR analysis for most of the accessions. High level of nucleotide diversity and presence of more than two types of ITS sequences in eight wild diploids pointed to their origin by hybridization of different genotypes. This study significantly expands the number of wild Musa species where nuclear genome size and genomic distribution of rDNA loci is known. SSR genotyping identified Musa species that are closely related to the previously characterized accessions and provided data to aid in their classification. Sequence analysis of ITS region provided further information about evolutionary relationships between individual accessions and suggested that some of analyzed accessions were interspecific hybrids and/or backcross progeny.  相似文献   

5.
6.
Musa (banana and plantain) is an important genus for the global export market and in local markets where it provides staple food for approximately 400 million people. Hybridization and polyploidization of several (sub)species, combined with vegetative propagation and human selection have produced a complex genetic history. We describe the application of the Ecotilling method for the discovery and characterization of nucleotide polymorphisms in diploid and polyploid accessions of Musa. We discovered over 800 novel alleles in 80 accessions. Sequencing and band evaluation shows Ecotilling to be a robust and accurate platform for the discovery of polymorphisms in homologous and homeologous gene targets. In the process of validating the method, we identified two single nucleotide polymorphisms that may be deleterious for the function of a gene putatively important for phototropism. Evaluation of heterozygous polymorphism and haplotype blocks revealed a high level of nucleotide diversity in Musa accessions. We further applied a strategy for the simultaneous discovery of heterozygous and homozygous polymorphisms in diploid accessions to rapidly evaluate nucleotide diversity in accessions of the same genome type. This strategy can be used to develop hypotheses for inheritance patterns of nucleotide polymorphisms within and between genome types. We conclude that Ecotilling is suitable for diversity studies in Musa, that it can be considered for functional genomics studies and as tool in selecting germplasm for traditional and mutation breeding approaches.  相似文献   

7.
The annual harvest of banana and plantain (Musa spp.) is approximately 145 million tons worldwide. About 85% of this global production comes from small plots and kitchen or backyard gardens from the developing world, and only 15% goes to the export trade. Musa acuminata and Musa balbisiana are the ancestors of several hundreds of parthenocarpic Musa diploid and polyploid cultivars, which show multiple origins through inter- and intra-specific hybridizations from these two wild diploid species. Generating hybrids combining host plant resistance to pathogens and pests, short growth cycles and height, high fruit yield, parthenocarpy, and desired quality from the cultivars remains a challenge for Musa crossbreeding, which started about one century ago in Trinidad. The success of Musa crossbreeding depends on the production of true hybrid seeds in a crop known for its high levels of female sterility, particularly among polyploid cultivars. All banana export cultivars grown today are, however, selections from somatic mutants of the group Cavendish and have a very narrow genetic base, while smallholders in sub-Saharan Africa, tropical Asia and Latin America use some bred-hybrids (mostly cooking types). Musa improvement goals need to shift to address emerging threats because of the changing climate. Innovative cell and molecular biology tools have the potential to enhance the pace and efficiency of genetic improvement in Musa. Micro-propagation has been successful for high throughput of clean planting materials while in vitro seed germination assists in obtaining seedlings after inter-specific and across ploidy hybridization. Flow cytometry protocols are used for checking ploidy among genebank accessions and breeding materials. DNA markers, the genetic maps based on them, and the recent sequencing of the banana genome offer means for gaining more insights in the genetics of the crops and to identifying genes that could lead to accelerating Musa betterment. Likewise, DNA fingerprinting has been useful to characterize Musa diversity. Genetic engineering provides a complementary tool to Musa breeders who can introduce today transgenes that may confer resistance to bacteria, fungi and nematodes, or enhance pro-vitamin A fruit content. In spite of recent advances, the genetic improvement of Musa depends on a few crossbreeding programs (based in Brazil, Cameroon, Côte d'Ivoire, Guadeloupe, Honduras, India, Nigeria, Tanzania and Uganda) or a handful of genetic engineering endeavors (Australia, Belgium, India, Kenya, Malaysia and Uganda). Development investors (namely international aid and philanthropy) should therefore increase their funding to genetically enhance this crop that ranks among the 10-top staple foods of the developing world.  相似文献   

8.

Background

The cultivated banana and plantain (Musa spp.) are valuable for nutritional and socio-economic security for millions of people worldwide. In Benin, banana and plantain are among the most produced, consumed, and traded commodities. Its production is mainly for local consumption and remains insufficient to the demand. However, the varietal diversity of banana and plantain cultivated in Benin is not documented. This study aims at characterizing the banana and plantain cropping systems, genetic diversity, and production constraints as a baseline to the full utilization of this resource in crop improvement and to identify the potential production and agronomic qualities.

Methods

A baseline investigation of ethnobotanical attributes of banana cultivars was done in 51 randomly chosen villages in southern Benin. Interviews with randomly selected representative farmers were carried out. Key informant interviews and focus group discussions were used for global confirmatory investigation of survey data. Socio-demographic data and indigenous knowledge on the farmer uses of banana and plantain diversity, such as cultural practices, origin, and availability of banana and plantain planting materials, and the constraints and criteria of varietal preference cited by farmers were ranked.

Results

Eighty-seven locally recognized cultivars were found: 73 of banana and 14 of plantain groups. The most popular cultivars were Sotoumon (banana) (52.94%), Aloga (plantain) (41.17%), Planta (banana) (33.33%), and Adjangan (plantain) (27.45%). Of the eleven production constraints identified, the main biotic challenges were banana weevil Cosmopolites sordidus Germar and banana bunchy top virus (BBTV), while abiotic problems were drought and the wind. Some local varieties like Amandan, Assonwonnou, Coleti, and Ninkouin are extremely rare owing to agronomic and economic preference perceptions.

Conclusion and implications

This study provides a baseline for banana diversity in Benin and the West African region and entry points for biological characterization and production improvement. This would enable the exploitation of this resource for plant breeding towards biotic and abiotic challenges facing banana production.
  相似文献   

9.
Genetic diversity amongst 76 plantain landraces has been studied using RAPD analysis at two levels of intensity and compared with groupings based on phenotypic indices and morphotype. There was a good correlation (R2=0.78) between estimates of genetic diversity based on 76 RAPD bands and 164 RAPD bands. However, there was a poor correlation between RAPD-based estimates of genetic diversity and a phenotypic index based on agronomic characters. There was also a poor correlation between RAPD analyses and morphotype group (based on bunch type and stature). These results suggest that the traditional designations of plantain landraces based on morphotype do not provide a true reflection of overall genetic divergence. Similarly, classification systems using phenotypic indices based on agronomic characters may not provide accurate taxonomic differentiation. The level of genetic divergence within morphogroups based on bunch type suggests that True Horn plantains are derived from False Horn plantains which in turn are derived from French plantains. Genetic divergence was found to be generally quite low within the plantain landrace genepool, which is consistent with the proposed evolution of this germplasm through somatic mutation of a relatively small number of introductions. However, putative synonyms/duplicates have been shown to be genetically distinct. In contrast, a group of 12 landraces have been identified that are highly distinct from one another (showing 20–35% dissimilarity). Fertile members of this group may be useful for generating genetically diverse 2x and 4x breeding populations that can be used in breeding secondary triploid hybrid plantain varieties. Received: 8 January 2000 / Accepted: 2 March 2000  相似文献   

10.
Edible banana and plantains of the Musa genus are important staple food crops cultivated in humid tropical and subtropical climatic zones. These crops are important for subsistence farming in rural communities and also to generate significant employment and income. In an effort to increase the genetic variability of available cultivars, indexed accessions have been introduced into a regional collection in southeastern Mexico, through the Banana Bioversity International Program. The aim of this study was to use the fluorescently labeled sequence-related amplified polymorphism (SRAP) molecular marker system to characterize the genetic variability within 71 accessions of the existing collection and resolved uncertainties for the better management of the collection, as a preliminary step to establishing a breeding program. These accessions, which included wild species and cultivars of different subgroups, were consistently identified and separated by SRAP markers. A total of 330 polymorphic bands were detected using 12 primer combinations. The average number of polymorphic bands per primer pair was 27.5. The genetic similarity between accessions ranged between 0.44 and 0.97, as estimated using Jaccard's coefficient. Moreover, SRAP marker system probed to be useful to identify closely related accessions in the genus Musa and facilitated the recognition of duplicates to be eliminated and clarified uncertainties or mislabeled banana accessions introduced to the collection.  相似文献   

11.
Plantains (Musa spp., AAB group) are an important food crop and an integral component of the farming systems in the lowland humid forest zone of West and Central Africa. A group of 24 plantain cultivars, representing the major variability in West Africa, was evaluated for nine quantitative characters. The association between growth and yield parameters in this African plantain germplasm was examined to determine if the pattern of quantitative variation in inflorescence and vegetative traits agreed with taxonomic groupings based on inflorescence type and plant size. Phenotypic correlations between these traits were calculated. Giant cultivars were taller, their pseudostem thicker, and they flowered much later than medium-sized cultivars. Giant cultivars produced more foliage, resulting in heavier bunches with more hands and fruits. Groupings that resulted following principal component analysis (PCA) supported conventional taxonomic groupings of plantains. PC A was based mainly on time to flowering, pseudostem height, and number of fruits. The last two traits, in combination with the number of hermaphrodite flowers and the persistence of the male bud, sufficed to group plantain cultivars.  相似文献   

12.
Plantain-derived tetraploid hybrids are routinely crossed inMusabreedingprogrammes with diploidMusaaccessions for the efficient generationof putative triploid hybrid seed. However, natural open pollinationof these same tetraploid hybrids also consistently generatesviable seed. The mean germination rate of such open pollinatedseed was observed to be higher than that of seed generated fromartificial pollinations. This may suggest that tetraploidMusahybridsplayed a much more important role in the evolution of triploidMusalandracesthan previously considered. Moreover, the elite performanceof certain hybrids generated through such open pollination offerspossibilities of newMusabreeding paradigms. The inferences ofthese observations forMusaevolution and the implications forMusabreedingare discussed.Copyright 1997 Annals of Botany Company Banana; hybrid seed; Musa; open pollination; plantain; polycross; synthetic  相似文献   

13.
14.
 Nuclear genome size variation was studied in Musa acuminata (A genome), Musa balbisiana (B genome) and a range of triploid clones differing in genomic constitution (i.e. the relative number of A and B genomes). Nuclear DNA content was estimated by flow cytometry of nuclei stained by propidium iodide. The A and B genomes of Musa differ in size, the B genome being smaller by 12% on average. No variation in genome size was found among the accessions of M. balbisiana (average genome size 537 Mbp). Small, but statistically significant, variation was found among the subspecies and clones of M. acuminata (ranging from 591 to 615 Mbp). This difference may relate to the geographical origin of the individual accessions. Larger variation in genome size (8.8%) was found among the triploid Musa accessions (ranging from 559 to 613 Mbp). This variation may be due to different genomic constitutions as well as to differences in the size of their A genomes. It is proposed that a comparative analysis of genome size in diploids and triploids may be helpful in identifying putative diploid progenitors of cultivated triploid Musa clones. Statistical analysis of data on genome size resulted in a grouping which agreed fairly well with the generally accepted taxonomic classification of Musa. Received: 11 May 1998 / Accepted: 29 September 1998  相似文献   

15.
Bananas (Musa spp.) are one of the main fruit crops grown worldwide. With the annual production reaching 144 million tons, their production represents an important contribution to the economies of many countries in Asia, Africa, Latin-America and Pacific Islands. Most importantly, bananas are a staple food for millions of people living in the tropics. Unfortunately, sustainable banana production is endangered by various diseases and pests, and the breeding for resistant cultivars relies on a far too small base of genetic variation. Greater diversity needs to be incorporated in breeding, especially of wild species. Such work requires a large and thoroughly characterized germplasm collection, which also is a safe depository of genetic diversity. The largest ex situ Musa germplasm collection is kept at the International Transit Centre (ITC) in Leuven (Belgium) and currently comprises over 1500 accessions. This report summarizes the results of systematic cytological and molecular characterization of the Musa ITC collection. By December 2015, 630 accessions have been genotyped. The SSR markers confirmed the previous morphological based classification for 84% of ITC accessions analyzed. The remaining 16% of the genotyped entries may need field verification by taxonomist to decide if the unexpected classification by SSR genotyping was correct. The ploidy level estimation complements the molecular data. The genotyping continues for the entire ITC collection, including newly introduced accessions, to assure that the genotype of each accession is known in the largest global Musa gene bank.  相似文献   

16.
17.
Canavalia ensiformis is an under-exploited legume that has been used as forage, green manure, and a cover crop. Thus far, studies of the C. ensiformis germplasm have focused on morphological traits, which cannot be used to distinguish all known accessions or to evaluate their genetic diversity precisely. In this study, sequence-related amplified polymorphism (SRAP) markers were used to assess the genetic diversity and relationships among 29 C. ensiformis accessions originating from 16 countries. In total, 274 clear bands were amplified and 144 of them (52.6%) were polymorphic. The polymorphism information content values (PIC) ranged from 0.10 to 0.43, with an average of 0.27. An analysis of molecular variance (AMOVA) revealed that the most significant variation (92.0% of the total) occurred among accessions; the remaining 8.0% was attributed to variation within accessions. A cluster analysis and principal coordinates (PCoA) analysis produced similar results, whereby the 29 C. ensiformis accessions were divided into 5 clusters, each of which was composed of different accessions with different phenotypic traits. This study provides the theoretical basis for future biodiversity studies and breeding programs.  相似文献   

18.
The genus Musa is not native to Africa. It evolved in tropical Asia, from southwest India eastward to the island of New Guinea. There is a growing circumstantial evidence which suggests that the East African Highland banana and the tropical lowland plantain were cultivated on the African continent since before 1 AD. It is also probable that ABB cooking and AB and AAB dessert cultivars were brought to the continent from India by Arabian traders from 600 AD, and that these were disseminated throughout East Africa. During the colonial era, the main centres of distribution for banana cultivars were botanical gardens, such as Zomba in Malawi, Entebbe in Uganda and Amani in Tanzania. It appears that the very early introductions of Highland banana and plantain arrived in Africa as a relatively clean material without the conspicuous pests and diseases that affect them in Asia. In contrast, several devastating problems now impact the crop in Africa, including nematodes, the borer weevil and diseases, most notably banana bunchy top, banana streak, Sigatoka leaf spots, Xanthomonas wilt and Fusarium wilt. We (a) provide chronological overviews of the first reports/observations of different Musa pests and pathogens/diseases in Africa, (b) highlight specific examples of when a pest or pathogen/disease was introduced via planting materials and (c) give recent examples of how the pests and pathogens spread to new regions via planting materials. In total, these production constraints threaten banana and plantain production throughout the continent and impact those who can ill afford lost production, the small‐holder producer. Our intent in this review is to highlight the significance of these problems and the great importance that infested planting materials have played in their development.  相似文献   

19.
20.
The peanut (Arachis hypogaea) is an important oil crop. Breeding for high oil content is becoming increasingly important. Wild Arachis species have been reported to harbor genes for many valuable traits that may enable the improvement of cultivated Arachis hypogaea, such as resistance to pests and disease. However, only limited information is available on variation in oil content. In the present study, a collection of 72 wild Arachis accessions representing 19 species and 3 cultivated peanut accessions were genotyped using 136 genome-wide SSR markers and phenotyped for oil content over three growing seasons. The wild Arachis accessions showed abundant diversity across the 19 species. A. duranensis exhibited the highest diversity, with a Shannon-Weaver diversity index of 0.35. A total of 129 unique alleles were detected in the species studied. A. rigonii exhibited the largest number of unique alleles (75), indicating that this species is highly differentiated. AMOVA and genetic distance analyses confirmed the genetic differentiation between the wild Arachis species. The majority of SSR alleles were detected exclusively in the wild species and not in A. hypogaea, indicating that directional selection or the hitchhiking effect has played an important role in the domestication of the cultivated peanut. The 75 accessions were grouped into three clusters based on population structure and phylogenic analysis, consistent with their taxonomic sections, species and genome types. A. villosa and A. batizocoi were grouped with A. hypogaea, suggesting the close relationship between these two diploid wild species and the cultivated peanut. Considerable phenotypic variation in oil content was observed among different sections and species. Nine alleles were identified as associated with oil content based on association analysis, of these, three alleles were associated with higher oil content but were absent in the cultivated peanut. The results demonstrated that there is great potential to increase the oil content in A. hypogaea by using the wild Arachis germplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号