首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using sodium azide (NaN3)-induced anoxia plus aglycaemia as a model of chemically-induced ischemia in the hippocampal slice, we have evaluated the effects of the novel 5-HT(1A) partial agonist/5-HT(2) receptor antagonist adatanserin and the 5-HT(1A) receptor agonist BAYx3702 on the efflux of endogenous glutamate, aspartate and GABA. BAYx3702 (10-1000 nM) produced a significant (P<0.05) dose-related attenuation of ischemic efflux of both glutamate and GABA with maximum decrease being observed at 100 nM (73 and 69%, respectively). This attenuation was completely reversed by the addition of the 5-HT(1A) antagonist, WAY-100635 (100 nM). Similarly, adatanserin (10-1000 nM) produced a significant (P<0.05) dose-related attenuation in glutamate and GABA efflux with a maximum of 72 and 81% at 100 nM, respectively. This effect was completely reversed by the 5-HT(2A/C) receptor agonist, DOI but unaffected by WAY-100635. The 5-HT(2A) receptor antagonist MDL-100907 produced a comparable attenuation of glutamate when compared to adatanserin, while the 5-HT(2C) receptor antagonist, SB-206553, had no effect on ischemic efflux. None of these compounds significantly altered aspartate efflux from this preparation. In conclusion, the 5-HT(1A) receptor partial agonist 5-HT(2) receptor antagonist, adatanserin is able to attenuate ischemic amino acid efflux in a comparable manner to the full 5-HT(1A) agonist BAYx3702. However, in contrast to BAYx3702, adatanserin appears to produce it effects via blockade of the 5-HT(2A) receptor. This suggests that adatanserin may be an effective neuroprotectant, as has been previously demonstrated for full 5-HT(1A) receptor agonists such as BAYx3702.  相似文献   

2.
Elevated levels of serotonin (5-hydroxytryptamine, 5-HT) are observed in the serum of asthmatics. Herein, we demonstrate that 5-HT functions independently as an eosinophil chemoattractant that acts additively with eotaxin. 5-HT2A receptor antagonists (including MDL-100907 and cyproheptadine (CYP)) were found to inhibit 5-HT-induced, but not eotaxin-induced migration. Intravital microscopy studies revealed that eosinophils roll in response to 5-HT in venules under conditions of physiological shear stress, which could be blocked by pretreating eosinophils with CYP. OVA-induced pulmonary eosinophilia in wild-type mice was significantly inhibited using CYP alone and maximally in combination with a CCR3 receptor antagonist. Interestingly, OVA-induced pulmonary eosinophilia in eotaxin-knockout (Eot-/-) mice was inhibited by treatment with the 5-HT2A but not CCR3 receptor antagonist. These results suggest that 5-HT is a potent eosinophil-active chemoattractant that can function additively with eotaxin and a dual CCR3/5-HT2A receptor antagonist may be more effective in blocking allergen-induced eosinophil recruitment.  相似文献   

3.
High performance liquid chromatography combined with either single quad or triple quad mass spectral detectors (LC/MS) was used to measure the brain distribution of receptor occupancy tracers targeting dopamine D2, serotonin 5-HT2A and neurokinin NK-1 receptors using the ligands raclopride, MDL-100907 and GR205171, respectively. All three non-radiolabeled tracer molecules were easily detectable in discrete rat brain areas after intravenous doses of 3, 3 and 30 microg/kg, respectively. These levels showed a differential brain distribution caused by differences in receptor density, as demonstrated by the observation that pretreatment with compounds that occupy these receptors reduced this differential distribution in a dose-dependent manner. Intravenous, subcutaneous and oral dose-occupancy curves were generated for haloperidol at the dopamine D2 receptor as were oral curves for the antipsychotic drugs olanzapine and clozapine. In vivo dose-occupancy curves were also generated for orally administered clozapine, olanzapine and haloperidol at the cortical 5-HT2A binding site. In vivo occupancy at the striatal neurokinin NK-1 binding site by various doses of orally administered MK-869 was also measured. Our results demonstrate the utility of LC/MS to quantify tracer distribution in preclinical brain receptor occupancy studies.  相似文献   

4.
Dopamine D2LR-serotonin 5-HT2AR heteromers were demonstrated in HEK293 cells after cotransfection of the two receptors and shown to have bidirectional receptor–receptor interactions. In the current study the existence of D2L-5-HT2A heteroreceptor complexes was demonstrated also in discrete regions of the ventral and dorsal striatum with in situ proximity ligation assays (PLA). The hallucinogenic 5-HT2AR agonists LSD and DOI but not the standard 5-HT2AR agonist TCB2 and 5-HT significantly increased the density of D2like antagonist 3H-raclopride binding sites and significantly reduced the pKiH values of the high affinity D2R agonist binding sites in 3H-raclopride/DA competition experiments. Similar results were obtained in HEK293 cells and in ventral striatum. The effects of the hallucinogenic 5-HT2AR agonists on D2R density and affinity were blocked by the 5-HT2A antagonist ketanserin. In a forskolin-induced CRE-luciferase reporter gene assay using cotransfected but not D2R singly transfected HEK293 cells DOI and LSD but not TCB2 significantly enhanced the D2LR agonist quinpirole induced inhibition of CRE-luciferase activity. Haloperidol blocked the effects of both quinpirole alone and the enhancing actions of DOI and LSD while ketanserin only blocked the enhancing actions of DOI and LSD. The mechanism for the allosteric enhancement of the D2R protomer recognition and signalling observed is likely mediated by a biased agonist action of the hallucinogenic 5-HT2AR agonists at the orthosteric site of the 5-HT2AR protomer. This mechanism may contribute to the psychotic actions of LSD and DOI and the D2-5-HT2A heteroreceptor complex may thus be a target for the psychotic actions of hallunicogenic 5-HT2A agonists.  相似文献   

5.
Blockade of NMDA receptors by intracortical infusion of 3-( R )-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP) increases glutamate (GLU) and serotonin (5-HT) release in the medial prefrontal cortex and impairs attentional performance in the 5-choice serial reaction time task. These effects are prevented by the 5-HT2A receptor antagonist, ( R )-(+)-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidine methanol (M100907). We explored the roles of endogenous 5-HT and 5-HT1A and 5-HT2C receptors in the mechanisms by which M100907 suppresses CPP-induced release of cortical GLU and 5-HT using in vivo microdialysis. CPP raised extracellular GLU and 5-HT by about 250% and 170% respectively. The 5-HT synthesis inhibitor, p -chlorophenylalanine (300 mg/kg), prevented M100907 suppressing CPP-induced GLU release. The effect of M100907 on these rises of GLU and 5-HT and attentional performance deficit was mimicked by the 5-HT2C receptor agonist, ( S )-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine fumarate, (Ro60-0175, 30 μg/kg) while intra-mPFC (SB242084, 6-chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-indoline, 0.1 μM), a 5-HT2C receptor antagonist, prevented the effect of M100907 on extracellular GLU. The 5-HT1A receptor antagonist, N -[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]- N -(2-pyridinyl)cyclohexane carboxenide trihydrochloride (100 μM) abolished the effect of M100907 on the CPP-induced 5-HT release. The data show that blockade of 5-HT2A receptors is not sufficient to suppress the CPP-induced rise of extracellular GLU and 5-HT and suggest that M100907 suppresses GLU release induced by CPP by enhancing the action of endogenous 5-HT on 5-HT2C receptors.  相似文献   

6.
Atypical antipsychotics show preferential 5-HT 2A versus dopamine (DA) D2 receptor affinity. At clinical doses, they fully occupy cortical 5-HT2 receptors, which suggests a strong relationship with their therapeutic action. Half of the pyramidal neurones in the medial prefrontal cortex (mPFC) express 5-HT 2A receptors. Also, neurones excited through 5-HT 2A receptors project to the ventral tegmental area (VTA). We therefore hypothesized that prefrontal 5-HT 2A receptors can modulate DA transmission through excitatory mPFC-VTA inputs. In this study we used single unit recordings to examine the responses of DA neurones to local (in the mPFC) and systemic administration of the 5-HT 2A/2C agonist 1-[2,5-dimethoxy-4-iodophenyl-2-aminopropane] (DOI). Likewise, using microdialysis, we examined DA release in the mPFC and VTA (single/dual probe) in response to prefrontal and systemic drug administration. The local (in the mPFC) and systemic administration of DOI increased the firing rate and burst firing of DA neurones and DA release in the VTA and mPFC. The increase in VTA DA release was mimicked by the electrical stimulation of the mPFC. The effects of DOI were reversed by M100907 and ritanserin. These results indicate that the activity of VTA DA neurones is under the excitatory control of 5-HT 2A receptors in the mPFC. These observations may help in the understanding of the therapeutic action of atypical antipsychotics.  相似文献   

7.
Serotonin [5-hydroxytryptamine (5-HT)] and CCK injected into the lateral parabrachial nucleus (LPBN) inhibit NaCl and water intake. In this study, we investigated interactions between 5-HT and CCK into the LPBN to control water and NaCl intake. Male Holtzman rats with cannulas implanted bilaterally in the LPBN were treated with furosemide + captopril to induce water and NaCl intake. Bilateral LPBN injections of high doses of the 5-HT antagonist methysergide (4 microg) or the CCK antagonist proglumide (50 microg), alone or combined, produced similar increases in water and 1.8% NaCl intake. Low doses of methysergide (0.5 microg) + proglumide (20 microg) produced greater increases in NaCl intake than when they were injected alone. The 5-HT(2a/2c) agonist 2,5-dimetoxy-4-iodoamphetamine hydrobromide (DOI; 5 microg) into the LPBN reduced water and NaCl intake. After proglumide (50 microg) + DOI treatment, the intake was not different from vehicle treatment. CCK-8 (1 microg) alone produced no effect. CCK-8 combined with methysergide (4 microg) reduced the effect of methysergide on NaCl intake. The data suggest that functional interactions between 5-HT and CCK in the LPBN may be important for exerting inhibitory control of NaCl intake.  相似文献   

8.
This study investigated, using in vivo microdialysis in the striatum of freely moving rats, the role of striatal serotonin2A (5-HT2A) and 5-HT2C receptor subtypes in the modulation of dopamine (DA) and 3, 4-dihydroxyphenylacetic acid (DOPAC) outflow, both in basal conditions and under activation induced by subcutaneous administration of 0.01 mg/kg haloperidol. The different 5-HT2 agents used were applied intrastriatally at a 1 microM concentration through the microdialysis probe. Basal DA efflux was enhanced (27%) by the 5-HT2A/2B/2C agonist 1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane (DOI) and reduced (-30%) by the 5-HT2B/2C antagonist SB 206553. It was unaffected by infusion of the 5-HT2A antagonist SR 46349B. The effect of DOI was abolished by SB 206553 but not modified by SR 46349B. Haloperidol-stimulated DA efflux (65-70%) was reduced by both SR 46349B (-32%) and the 5-HT2A/2B/2C antagonist ritanserin (-30%) but not affected by SB 206553. Conversely, the effect of haloperidol was potentiated (22%) when DOI was coperfused with SB 206553. Also, haloperidol-stimulated DOPAC outflow (40-45%) was reduced (-20%) by SR 46349B and potentiated (25%) by the combination of SB 206553 with DOI. These results indicate that striatal 5-HT2A receptors, probably through activation of DA synthesis, positively modulate DA outflow only under activated conditions. In contrast, striatal 5-HT2C receptors exert a facilitatory control on basal DA efflux, which appears to be both tonic and phasic.  相似文献   

9.
Aim Brain is the major target for the actions of ethanol and it can affect the brain in a variety of ways. In the present study we have investigated the changes in 5-HT level and the 5-HT2A receptors in the ethanol-treated rats. Methods Wistar adult male rats of 180–200 g body weight were given free access to 15% (v/v) (approx.7.5 g/Kg body wt./day) ethanol for 15 days. Controls were given free access to water for 15 days. Brain 5-HT and its metabolites were assayed by high performance liquid chromatography (HPLC) integrated with an electrochemical detector (ECD) fitted with C-18-CLS-ODS reverse phase column. 5-HT2A receptor binding assay was done with different concentrations of [3H] MDL 100907. Results The hypothalamic 5-HT content significantly increased (< 0.001) with a decreased (< 0.001) 5-HIAA/5-HT turnover in the ethanol-treated rats when compared to control. The corpus striatum 5-HT content significantly decreased (< 0.01) with increased (< 0.01) 5-HIAA/5- HT turnovers in the ethanol-treated rats when compared to control. Scatchard analysis of [3H] MDL 100907 against ketanserin in hypothalamus showed a significant increase (< 0.001) in Bmax with a decreased affinity (< 0.001) in ethanol-treated rats when compared to control. The competition curve for [3H] MDL 100907 against ketanserin fitted one-site model in all the groups with unity as Hill slope value. An increased Ki and log (EC50) value were also observed in ethanol-treated rats when compared to control. Scatchard analysis of [3H] MDL 100907 against ketanserin in the corpus striatum of ethanol-treated rats showed a significant increase (< 0.001) in Bmax and in affinity (< 0.01) when compared to control. The change in affinity of the receptor protein in both corpus striatum and hypothalamus shows an altered receptor. The competition curve for [3H] MDL 100907 against ketanserin fitted one-site model in all the groups with unity as Hill slope value. There was no significant change in Ki and log (EC 50) value in ethanol-treated rats when compared to control. Conclusion The present study demonstrated the enhanced 5-HT2A receptor status in hypothalamus and corpus striatum. The ethanol-induced enhanced 5-HT2A receptors in the hypothalamus and corpus striatum has clinical significance in the better management of ethanol addiction. This will have therapeutic application.  相似文献   

10.
The prefrontal cortex (PFC) is involved in the pathophysiology of schizophrenia. PFC neuronal activity is modulated by monoaminergic receptors for which antipsychotic drugs display moderate-high affinity, such as 5-HT(2A) and alpha(1)-adrenoceptors. Conversely, PFC pyramidal neurons project to and modulate the activity of raphe serotonergic neurons and serotonin (5-HT) release. Under the working hypothesis that atypical antipsychotic drugs may partly exert their action in PFC, we assessed their action on the in vivo 5-HT release evoked by increasing glutamatergic transmission in rat medial PFC (mPFC). This was achieved by applying S-AMPA in mPFC (reverse dialysis) or by disinhibiting thalamic excitatory afferents to mPFC with bicuculline. The application of haloperidol, chlorpromazine, clozapine and olanzapine in mPFC by reverse dialysis (but not reboxetine or diazepam) reversed the S-AMPA-evoked local 5-HT release. Likewise, the local (in mPFC) or systemic administration of these antipsychotic drugs reversed the increased prefrontal 5-HT release produced by thalamic disinhibition. These effects were shared by the 5-HT(2A) receptor antagonist M100907 and the alpha(1)-adrenoceptor antagonist prazosin. However, raclopride (DA D2 antagonist) had very modest effects. These results suggest that, besides their action in limbic striatum, antipsychotic drugs may attenuate glutamatergic transmission in PFC, possibly by interacting with 5-HT(2A) and/or alpha(1)-adrenoceptors.  相似文献   

11.
The 5-hydroxytryptamine (5-HT4) receptor may be implicated in depression and is a new potential target for antidepressant treatment. We have investigated the brain 5-HT4 receptor [3H]SB207145 binding in the Flinders Sensitive Line rat depression model by quantitative receptor autoradiography, and related this to 5-HT transporter ( S )-[ N -methyl-3H]citalopram binding. We also determined the regulation of 5-HT4 receptor binding by 1, 14, and 21 days of paroxetine administration and subchronic 5-HT depletion, and compared this with changes in 5-HT2A receptor [3H]MDL100907 binding. In the Flinders Sensitive Line, the 5-HT4 receptor and 5-HT transporter binding were decreased in the dorsal and ventral hippocampus, and the changes in binding were directly correlated within the dorsal hippocampus. Chronic but not acute paroxetine administration caused a 16–47% down-regulation of 5-HT4 receptor binding in all regions evaluated including the basal ganglia and hippocampus, while 5-HT depletion increased the 5-HT4 receptor binding in the dorsal hippocampus, hypothalamus, and lateral globus pallidus. In comparison, the 5-HT2A receptor binding was decreased in the frontal and cingulate cortices after chronic paroxetine administration, and markedly reduced in several regions after 5-HT depletion. Thus, the 5-HT4 receptor binding was decreased in the Flinders Sensitive Line depression model and in response to chronic paroxetine administration.  相似文献   

12.
Brain serotonin (5-HT) system has been implicated in pathophysiology of anxiety, depression, drug addiction, and schizophrenia. 5-HT2A receptor is involved in the mechanisms of stress-induced psychopathology and impulsive behavior. Here, we investigated the role of 5-HT2A receptor in the autoregulation of the brain 5-HT system. The chronic treatment with agonist of 5-HT2A receptor DOI (1.0 mg/kg, i.p./14 days) produced considerable decrease of 5-HT2A receptor-mediated "head-twitches" in AKR/J mice indicating desensitization of 5-HT2A receptors. Chronic DOI treatment failed to alter 5-HT2A receptor gene expression in the midbrain, hippocampus and frontal cortex. At the same time, the increase in the expression of the gene encoding key enzyme of 5-HT synthesis, tryptophan hydroxylase 2 (TPH2), the increase in TPH2 activity and 5-HT levels and decreased expression of serotonin transporter (5-HTT) gene was found in the midbrain of DOI-treated mice. The results provide new evidence of receptor-gene cross-talk in the brain 5-HT system and the implication of 5-HT2A receptor in the autoregulation of the brain 5-HT system.  相似文献   

13.
14.
R A Glennon 《Life sciences》1986,39(9):825-830
Using a two-lever drug discrimination procedure, six rats were trained to discriminate 0.5 mg/kg of racemic 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) from saline. Once trained, the animals demonstrated a dose-related decrease in discriminative performance upon administration of lower doses of DOI (ED50 = 0.16 mg/kg). DOI-stimulus generalization occurred with the putative 5-HT2 agonist DOM (ED50 = 0.49 mg/kg), but not with the 5-HT1A agonist 8-OH DPAT, or the 5-HT1B agonist TFMPP. Furthermore, the DOI stimulus could be antagonized by pretreatment of the animals with the 5-HT2 antagonist ketanserin. The present results, coupled with the prior demonstration that DOI possesses a significant affinity and selectivity for 5-HT2 binding sites, suggest that the discriminative stimulus effects of DOI may be 5-HT2-mediated.  相似文献   

15.
Atypical antipsychotic drugs (APDs), all of which are relatively more potent as serotonin (5-HT)(2A) than dopamine D(2) antagonists, may improve negative symptoms and cognitive dysfunction in schizophrenia, in part, via increasing cortical dopamine release. 5-HT(1A) agonism has been also suggested to contribute to the ability to increase cortical dopamine release. The present study tested the hypothesis that clozapine, olanzapine, risperidone, and perhaps other atypical APDs, increase dopamine release in rat medial prefrontal cortex (mPFC) via 5-HT(1A) receptor activation, as a result of the blockade of 5-HT(2A) and D(2) receptors. M100907 (0.1 mg/kg), a 5-HT(2A) antagonist, significantly increased the ability of both S:(-)-sulpiride (10 mg/kg), a D(2) antagonist devoid of 5-HT(1A) affinity, and R:(+)-8-OH-DPAT (0.05 mg/kg), a 5-HT(1A) agonist, to increase mPFC dopamine release. These effects of M100907 were abolished by WAY100635 (0.05 mg/kg), a 5-HT(1A) antagonist, which by itself has no effect on mPFC dopamine release. WAY100635 (0.2 mg/kg) also reversed the ability of clozapine (20 mg/kg), olanzapine (1 mg/kg), risperidone (1 mg/kg), and the R:(+)-8-OH-DPAT (0.2 mg/kg) to increase mPFC dopamine release. Clozapine is a direct acting 5-HT(1A) partial agonist, whereas olanzapine and risperidone are not. These results suggest that the atypical APDs via 5-HT(2A) and D(2) receptor blockade, regardless of intrinsic 5-HT(1A) affinity, may promote the ability of 5-HT(1A) receptor stimulation to increase mPFC DA release, and provide additional evidence that coadministration of 5-HT(2A) antagonists and typical APDs, which are D(2) antagonists, may facilitate 5-HT(1A) agonist activity.  相似文献   

16.
This study investigates, using in vivo microdialysis, the role of serotonin2A (5-HT2A) and 5-HT(2B/2C) receptors in the effect of dorsal raphe nucleus (DRN) electrical stimulation on dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) extracellular levels monitored in the nucleus accumbens (NAC) and the striatum of halothane-anesthetized rats. Following DRN stimulation (300 microA, 1 ms, 20 Hz, 15 min) DA release was enhanced in the NAC and reduced in the striatum. The 5-HT2A antagonist SR 46349B (0.5 mg/kg) and the mixed 5-HT(2A/2B/2C) antagonist ritanserin (0.63 mg/kg) significantly reduced the effect of DRN stimulation on DA release in the NAC but not in the striatum. DA responses to DRN stimulation were not affected by the 5-HT(2B/2C) antagonist SB 206553 (5 mg/kg) in either region. None of these compounds was able to modify the enhancement of DOPAC and 5-HIAA outflow induced by DRN stimulation in either the NAC or the striatum. Finally, in both brain regions basal DA release was significantly increased only by SB 206553. These results indicate that 5-HT2A but not 5-HT(2B/2C) receptors participate in the facilitatory control exerted by endogenous 5-HT on accumbal DA release. Conversely, 5-HT(2B/2C) receptors tonically inhibit basal DA release in both brain regions.  相似文献   

17.
18.
Using extracellular recording we studied changes in the reactivity of rat frontal cortical slices to the 5-HT(1A), 5-HT(2) and 5-HT(4) receptor agonists, (+/-)-2-dipropyloamino-8-hydroxy-1,2,3,4-tetrahydronaphtalene hydrobromide (8-OH-DPAT), (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI) and zacopride, respectively, induced by an earlier treatment of animals with corticosterone lasting 1 or 3 weeks. Spontaneous bursting activity was recorded in ex vivo slices incubated in a medium devoid of Mg(2+) ions and containing picrotoxin (30 microM). Repetitive, but not single, corticosterone administration resulted in an attenuation of the effect of the activation of 5-HT(1A) receptors and in an enhancement of the effect related to 5-HT(2) receptors. The effect of 5-HT(4) receptor activation remained unchanged. In separate two sets of experiments rats were treated with corticosterone for 3 weeks and additionally with imipramine or citalopram, beginning on the eighth day of corticosterone administration. In the corticosterone plus imipramine as well as corticosterone plus citalopram groups the effects of 8-OH-DPAT and DOI were not different from control indicating that corticosterone-induced functional modifications in the reactivity of 5-HT(1A) and 5-HT(2) receptors were reversed by antidepressant treatments.  相似文献   

19.
The frontal cortex is innervated by serotonergic terminals from the raphe nuclei and it expresses diverse 5-HT receptor subtypes. We investigated the effects of 5-HT and different 5-HT receptor subtype-selective agonists on spontaneous discharges which had developed in rat cortical slices perfused with a Mg2+-free medium and the GABA(A) receptor antagonist picrotoxin. The frequency of synchronous discharges, recorded extracellularly in superficial layers (II/III) of the frontal cortex, was dose-dependently enhanced by 5-HT (2.5-40 microM). That excitatory effect was blocked by the 5-HT2 receptor selective antagonist ketanserin. The 5-HT2A/2C receptor-selective agonist DOI and the 5-HT4 receptor agonist zacopride also increased the frequency of spontaneous discharges. In the presence of ketanserin, 5-HT decreased the discharge rate; a similar effect was observed when the 5-HT1A receptor agonist 8-OH-DPAT or the 5-HT1B receptor agonist CGS-12066B was applied. The 5-HT3 receptor agonist m-CPBG was ineffective. In conclusion, 5-HT produces multiple effects on epileptiform activity in the frontal cortex via activation of various 5-HT receptor subtypes. The excitatory action of 5-HT, which predominates, is mediated mainly by 5-HT2 receptors. The inhibitory effects can be attributed to activation of 5-HT1A and 5-HT1B receptors.  相似文献   

20.
The intravenous administration of low doses of lysergic acid diethylamide (LSD) or of the selective 5-hydroxytryptamine1A (5-HT1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) depresses the firing activity of dorsal raphe 5-HT-containing neurons, presumably via the activation of 5-HT1A receptors. The present studies were undertaken to determine the effect of different types of 5-HT receptor antagonists on this effect of LSD and 8-OH-DPAT. (-)-Propranolol (2 mg/kg i.v.), methiothepin (2 mg/kg i.p., twice daily for 4 days followed by an additional dose of 2 mg/kg i.p., prior to the experiment), pelanserine (0.5 mg/kg i.v.), and indorenate (125 micrograms/kg i.v.) failed to block the effects of either LSD or 8-OH-DPAT on the firing activity of 5-HT neurons of the dorsal raphe nucleus. However, spiperone (1 mg/kg i.v.) significantly reduced the effect of both LSD and 8-OH-DPAT. These results indicate that, among the five putative 5-HT receptor antagonists tested, only spiperone can antagonize the suppressant effect of 5-HT receptor agonists on the firing of dorsal raphe 5-HT neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号