首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M K Mathew  C F Hui  C L Smith  C R Cantor 《Biochemistry》1988,27(26):9222-9226
Pulsed-field gel electrophoresis is a powerful technique for the fractionation of linear DNA molecules with sizes above 50 kilobase pairs (kb). Here it is demonstrated that this technique is also effective for separating smaller DNAs including linear, circular, and supercoiled species. The mobilities of linear DNAs larger than 8 kb can be modulated by pulse times between 0.1 and 100 s. The mobility of supercoiled DNA molecules up to 16 kb is generally unaffected by these pulse times except that 10-s pulse times cause a small but distinct increase in the mobility. The general insensitivity of small supercoiled DNAs to pulse time presumably occurs because these species reorient so rapidly that they spend most of their time undergoing conventional electrophoresis. However, the mobilities of larger supercoiled DNAs are affected by pulse times of less than 1 s, and at 0.1 s the molecules are better resolved by pulsed electrophoresis than by ordinary electrophoresis. The mobility of 3-19 kb nicked and relaxed circular DNA molecules is also affected by pulse time but in a complex way.  相似文献   

2.
A study of the B-A transition in DNA by gel electrophoresis   总被引:1,自引:0,他引:1  
A procedure is developed for studying the B-A transition in DNA using gel electrophoresis. The starting point has been the idea that the junction between the A and B sections, which appear within the transition interval would increase the mobility of the DNA molecules. Indeed, the mobility of DNA in a gel is shown to increase in the middle of the B-A transition due to the formation of the largest possible number of boundaries between the B and A forms. The middle of the B-A transition in supercoiled DNA appears to be shifted against the middle of the transition in open circular (as well as linear) DNA by about 1.3% towards lower ethanol concentrations under the influence of the superhelical stress.  相似文献   

3.
B S Rao  R G Martin 《Journal of virology》1988,62(10):3879-3882
We have studied the early transition of newly replicated, segregated daughter molecules of simian virus 40 (SV40) into their mature, fully supercoiled state. The DNA of SV40 replicating in African green monkey kidney CV1 cells was chronically labeled with [14C]thymidine and pulse-labeled with [3H]thymidine. The cells were lysed and the viral DNA was isolated. Density gradient centrifugation of viral DNA in cesium chloride revealed that the pulse-labeled, newly synthesized, closed circular supercoiled DNA molecules banded at a slightly higher density (delta sigma = 0.0025) than the chronically labeled DNA, suggesting that the newly completed molecules were in a different structural state. Electrophoresis of DNA in agarose gels at appropriate chloroquine concentrations demonstrated that the mobility of the pulse-labeled closed, superhelical DNA was retarded relative to that of the chronically labeled DNA. These observations indicated that the newly completed SV40 DNA molecules existed in a structural state more relaxed than that of mature DNA by one or two linking numbers.  相似文献   

4.
Abstract

A procedure is developed for studying the B-A transition in DNA using gel electrophoresis. The starting point has been the idea that the junction between the A and B sections, which appear within the transition interval would increase the mobility of the DNA molecules. Indeed, the mobility of DNA in a gel is shown to increase in the middle of the B-A transition due to the formation of the largest possible number of boundaries between the B and A forms. The middle of the B-A transition in supercoiled DNA appears to be shifted against the middle of the transition in open circular (as well as linear) DNA by about 1.3% towards lower ethanol concentrations under the influence of the superhelical stress.  相似文献   

5.
We established that chemical analogues of alkylhydroxybenzenes (AHB), belonging to alkylresorcinols and functioning as microbial autoregulatory d1 factors, enhance the UV resistance of various DNA molecules of different origin and conformation. These include the linear DNA of the lambda phage, bovine spleen DNA, and the DNA of the pUC19 plasmid that is composed of a number of annular (supercoiled and relaxed) and linearized molecules. Irradiating DNA with UV light (lambda = 254 nm) in the presence of methylresorcinol (MR) or hexylresorcinol (HR) results in comparatively insignificant DNA destruction as evidenced by our data on the electrophoretic mobility pattern in agarose gel. Using the linear Hind III restricts of the lambda phage DNA, we revealed that the protective effect of AHB varies depending on their chemical structure (it is more manifest with HR than MR) and concentration. Importantly, the effect of HR on bovine spleen DNA was based on its protective activity and manifested itself after a long incubation period. Studies using the pUC19 plasmid demonstrated that AHB, apart from increasing the resistance of linearized DNA molecules to UV irradiation, prevented both the supercoiled annular-supercoiled relaxed and the supercoiled relaxed-linearized transitions. The possible mechanisms of the UV-protective effect of AHB on DNA and their contributions to the resistance of dormant microbial forms to environmental factors are discussed.  相似文献   

6.
Winding of the DNA helix by divalent metal ions.   总被引:1,自引:0,他引:1       下载免费PDF全文
Y C Xu  H Bremer 《Nucleic acids research》1997,25(20):4067-4071
When supercoiled pBR322 DNA was relaxed at 0 or 22 degrees C by topoisomerase I in the presence of the divalent cations Ca2+, Mn2+ or Co2+, the resulting distributions of topoisomers observed at 22 degrees C had positive supercoils, up to an average delta Lk value of +8.6 (for Ca2+at 0 degrees C), corresponding to an overwinding of the helix by 0.7 degrees/bp. An increase of the divalent cation concentration in the reaction mixture above 50 mM completely reversed the effect. When such ions were present in agarose electrophoresis gels, they caused a relaxation of positively supercoiled DNA molecules, and thus allowed a separation of strongly positively supercoiled topoisomers. The effect of divalent cations on DNA adds a useful tool for the study of DNA topoisomers, for the generation as well as separation of positively supercoiled DNA molecules.  相似文献   

7.
Characterization of a potent catenation activity of HeLa cell nuclei   总被引:1,自引:0,他引:1  
Using an assay which measures catenation of a supercoiled DNA template, we have characterized and quantitated a potent activity identified in crude fractions of HeLa cell nuclei. Catenation requires Mg-ATP and a DNA-condensing agent, polyvinyl alcohol. A filter-binding or agarose gel assay can be used to quantitate activity. In this reaction, DNA topoisomerase I relaxes the input supercoiled DNA to provide DNA topoisomerase II, a strongly favored template for catenation. DNA topoisomerase II preferentially catenates relaxed DNA over supercoiled DNA by a factor of 100. One molecule of DNA topoisomerase II is able to catenate about 20 circles of relaxed DNA/min at 30 degrees C but only 0.16 circle of supercoiled DNA/min at 30 degrees C. The purified HeLa topoisomerase I can also catenate DNA under these assay conditions, yet in an ATP-independent fashion. It is much less efficient than topoisomerase II; one molecule of topoisomerase I catenates only about 3.8 X 10(-3) molecules of supercoiled DNA/min at 30 degrees C with a DNA template containing 5% nicked circles. This remarkable difference between the two enzymes allows quantitation of DNA topoisomerase II activity seen in the presence of excess topoisomerase I. Unlike Escherichia coli topoisomerase I (omega), catenation by the HeLa topoisomerase I is not stimulated by gapped circles.  相似文献   

8.
We established that chemical analogues of alkylhydroxybenzenes (AHB), belonging to alkylresorcinols and functioning as microbial autoregulatory d1 factors, enhance the UV resistance of various DNA molecules of different origin and conformation. These include the linear DNA of the λ phage, bovine spleen DNA, and the DNA of the pUC19 plasmid that is composed of a number of annular (supercoiled and relaxed) and linearized molecules. Irradiating DNA with UV light (λ = 254 nm) in the presence of methylresorcinol (MR) or hexylresorcinol (HR) results in comparatively insignificant DNA destruction as evidenced by our data on the electrophoretic mobility pattern in agarose gel. Using the linear HindIII restricts of the λ phage DNA, we revealed that the protective effect of AHB varies depending on their chemical structure (it is more manifest with HR than MR) and the concentration. Importantly, the effect of HR on bovine spleen DNA was based on its protective activity and manifested itself after a long incubation period. Studies using the pUC19 plasmid demonstrated that AHB, apart from increasing the resistance of linearized DNA molecules to UV irradiation, prevented both the supercoiled annular-supercoiled relaxed and the supercoiled relaxed-linearized transitions. The possible mechanisms of the UV-protective effect of AHB on DNA and their contributions to the resistance of dormant microbial forms to environmental factors are discussed.  相似文献   

9.
DNA preparations were obtained after dissolving the inclusion bodies, polyhedra virus particles, from the purified bundle virus of Porthetria dispar L. nuclear polyhedrosis. The DNA molecules in the preparations obtained are of different conformation and separate within the CsCl density gradient in the presence of ethidium bromide into supercoiled catenated and relaxed circular molecules (with the admixture of linear molecules). The circular DNA was studied by electron microscopy. The size of virus genome according to the data of reassociation kinetics of DNA is about 100 MD. Estimated on the basis of the values of buoyant density (p) and the melting temperature (Tmelt.) the content of guanine-cytosine pairs (GC pairs) in the viral DNA varies from 61 up to 65 mol%, and in the insect cell DNA--from 38 up to 40 mol%. The viral and cellular DNA are distinctly separated by centrifugation within the CsCl density gradient.  相似文献   

10.
Cruciform transitions in DNA   总被引:14,自引:0,他引:14  
The rates of transition between the cruciform and linear conformations of a perfectly inverted repeated lac operator DNA sequence have been measured using a trimethylpsoralen intrastrand cross-linking assay. The rate and extent of the linear to cruciform transition were dependent on temperature and on the superhelical density of the DNA. Apparent half-lives for this transition were between 4-9 min at 37 degrees C for supercoiled DNAs as isolated from cells. The half-life for the cruciform to linear transition in relaxed DNA was about 30 s at 37 degrees C. Mg2+ stabilized both conformations but stabilized the linear form to a greater degree than the cruciform. The rates of transition were temperature dependent suggesting enthalpies of activation of 26.3 kcal mol-1 for the cruciform to linear transition and 33.4 kcal mol-1 for the linear to cruciform transition. The rate of the linear to cruciform transition was slower at 50 than 37 degrees C. Heating above 70 degrees C resulted in the loss of the cruciform structure.  相似文献   

11.
An endonuclease associated with the core of Friend leukemia virus (FLV) has been purified more than 10(3)-fold by ion exchange chromatography and gel filtration. Its molecular weight was determined by gel filtration to be about 40,000. Divalent cations were required for the endonuclease to function and KCl concentrations above 50 mM inhibited the enzyme activity. In the presence of Mg++ the purified enzyme nicked preferentially supercoiled circular DNA duplexes and in most of these molecules only one single-stranded nick was introduced per strand. The regions into which the nick could be introduced appeared to be randomly distributed on the circular molecule. When Mn++ was substituted for Mg++ the number of nicks introduced into DNA by the purified enzyme was greatly increased, and both relaxed circular and linear DNA duplexes were nicked as well as supercoiled circular DNA duplexes. Prior to its purification, however, in the presence of Mn++ the endonuclease activity in the virus extract was able to differentiate between circular and linear DNA duplexes, since both supercoiled and relaxed circular duplexes were nicked much more readily than linear duplexes. Single-stranded DNA functioned poorly as a substrate for the purified enzyme.  相似文献   

12.
B Akerman 《Biophysical journal》1998,74(6):3140-3151
Electrophoretic velocity and orientation have been used to study the electric-field-induced trapping of supercoiled and relaxed circular DNA (2926 and 5386 bp) in polyacrylamide gels (5% T, 3.3% C) at 7.5-22.5 V/cm, using as controls linear molecules of either the same contour length or the same radius of gyration. The circle-specific trapping is reversible. From the duration of the reverse pulse needed to detrap the molecules, the average trap depth is estimated to be 90 A, which is consistent with the molecular charge and the field strengths needed to keep molecules trapped. Trapped circles exhibit a strong field alignment compared to the linear form, and there is a good correlation between the enhanced field alignment for the circles and the onset of trapping in both constant and pulsed fields. The circles do not exhibit the orientation overshoot response to a field pulse seen with linear DNA, and the rate of orientation growth scales as E(-2+/-0.1) with the field, as opposed to E(-1.1+/-0.1) for the linear form. These results show that the linear form migrates by cyclic reptation, whereas the circles most likely are trapped by impalement on gel fibers. This proposal is supported by very similar velocity and orientation behavior of circular DNA in agarose gels, where impalement has been deemed more likely because of stiffer gel fibers. The trapping efficiency is sensitive to DNA topology, as expected for impalement. In polyacrylamide the supercoiled form (superhelical density sigma = -0.05) has a two- to fourfold lower probability of trapping than the corresponding relaxed species, whereas in agarose gels the supercoiled form is not trapped at all. These results are consistent with existing data on the average holes in the plectonemic supercoiled structures and the fiber thicknesses in the two gel types. On the basis of the topology effect, it is argued that impalement during pulsed-field electrophoresis in polyacrylamide gels may be useful for the separation of more intricate DNA structures such as knots. The results also indicate that linear dichroism on field-aligned molecules can be used to measure the supercoiling angle, if relaxed DNA circles are used as controls for the global degree of orientation.  相似文献   

13.
The extent of equilibrium perturbation of the DNA helix associated with enzymatic methylation of dA residues has been determined by the agarose gel electrophoresis band-shift method. Utilization of EcoRI methylase under conditions of reduced specificity together with Escherichia coli dam methylase permitted modification of up to 300 dA residues/plasmid pBR322 dimer. A conformational change associated with methylation was observed, with the magnitude of the transition being linear with extent of modification of relaxed DNA circles. The conformational change corresponds to an unwinding of the DNA helix by 0.5 degrees/methyl group transferred to relaxed molecules. The magnitude of the effect was independent of temperature from 5-37 degrees C indicating that it is not the consequence of a thermal transition within this range.  相似文献   

14.
The effect of high supercoil densities on the melting characteristics of a supercoiled DNA has been studied. It is found that although the melting temperature increases abruptly on converting a linear DNA merely into the relaxed circular form, it falls back substantially at high supercoil densities. It is further predicted, in such cases, that the number of melted base pairs should be significantly enhanced even at the physiological temperature, which may facilitate the binding of other molecules to the highly supercoiled DNA.  相似文献   

15.
Oriented agarose gels were prepared by applying an electric field to molten agarose while it was solidifying. Immediately afterwards, DNA samples were applied to the gel and electrophoresed in a constant unidirectional electric field. Regardless of whether the orienting field was applied parallel or perpendicular to the eventual direction of electrophoresis, the mobilities of linear and supercoiled DNA molecules were either faster (80% of the time) or slower (20% of the time) than observed in control, unoriented gels run simultaneously. The difference in mobility in the oriented gel (whether faster or slower) usually increased with increasing DNA molecular weight and increasing voltage applied to orient the agarose matrix. In perpendicularly oriented gels linear DNA fragments traveled in lanes skewed toward the side of the gel; supercoiled DNA molecules traveled in straight lanes. If the orienting voltage was applied parallel to the direction of electrophoresis, both linear and supercoiled DNA molecules migrated in straight lanes. These effects were observed in gels cast from different types of agarose, using various agarose concentrations and two different running buffers, and were observed both with and without ethidium bromide incorporated in the gel. Similar results were observed if the agarose was allowed to solidify first, and the orienting electric field was then applied to the gel for several hours before the DNA samples were added and electrophoresed. The results suggest that the agarose matrix can be oriented by electric fields applied to the gel before and probably during electrophoresis, and that orientation of the matrix affects the mobility and direction of migration of DNA molecules. The skewed lanes observed in the perpendicularly oriented gels suggest that pores or channels can be created in the matrix by application of an electric field. The oriented matrix becomes randomized with time, because DNA fragments in oriented and unoriented gels migrated in straight lanes with identical velocities 24 hours later.  相似文献   

16.
We have determined the gel electrophoretic behavior of closed circular plasmid pSM1 DNA (5420 bp) as a function of both temperature and of linking number (Lk). At temperatures below 37 degrees, the electrophoretic mobility first increases, then becomes constant as Lk is decreased below that of the relaxed closed DNA. As the temperature is increased above 37 degrees the electrophoretic mobility first increases as Lk decreases and then varies in a cyclic manner with further decreases in Lk. As the temperature is increased over the range 37 degrees - 65 degrees the cyclic behavior is manifested at progressively smaller decreases in Lk and the amplitude of the cycles increases. We interpret the results in terms of the early melting of superhelical DNA, in which the free energy associated with superhelix formation is progressively transferred to local denaturation. Using a two state approximation, we estimate the free energy change in the first cyclic transition to be 35 Kcal/mole DNA at 37 degrees and to decrease linearly with temperature. The free energy becomes equal to zero at a temperature of 71.6 degrees, which lies within 3 degrees of the melting temperature for the corresponding nicked circular DNA. From the slope of this relationship we estimate the apparent entropy and enthalpy of the first mobility transition to be 6.0 Kcal/mole base pair and 17.3 cal/mole base pair/degree, values consistent with duplex melting.  相似文献   

17.
The migration properties of a series of supercoiled plasmids ranging in size from 4 to 16 kilobases (kb) have been analyzed by orthogonal-field-alternation gel electrophoresis (OFAGE). These circular DNAs enter the gel and are well resolved. Unlike linear DNA molecules, the relative mobilities of these plasmids are constant over a wide range of pulse times, from 10 to 120 seconds, as well as over a broad range of total running times, from 6 to 24 hours. Electrophoresis of supercoiled, relaxed, and nicked open circular forms as well as topoisomers of pBR322 shows that the extent of supercoiling has a dramatic effect on plasmid migration on OFAGE. Several practical applications for exploiting the different migration properties of circular and linear DNA molecules on OFAGE are presented.  相似文献   

18.
Agarose gel electrophoresis has been used to fractionate polyoma virus DNA replicative intermediates (RI) according to maturity. Approximate electrophoretic mobility versus maturity relationships were obtained for both intact (supercoiled) and nicked (relaxed) RI. There was considerable overlap between the supercoiled and relaxed RI populations after electrophoretic fractionation. Intact RI could be recovered from preparative agarose gels for further analysis by centrifugation, electron microscopy, re-electrophoresis, or nuclease digestion.  相似文献   

19.
N A Touchette  R D Cole 《Biochemistry》1992,31(6):1842-1849
The effects of increasing NaCl concentrations on the melting profiles of chromatin in isolated nuclei contradicted published claims that structural transitions near 76 degrees C (Tn-7), near 89 degrees C (Tn-8), and near 105 degrees C (Tn-10) were respectively the melting of linker DNA, the melting of extended nucleosomal strands, and the collapse of nucleosomes in the 300-A fiber. Contrary to expectations of such an interpretation, decreases in salt concentration stabilized Tn-7 and failed to eliminate Tn-10. Moreover, nuclei depleted of H1 histone, which is known to be essential for the formation of the 300-A fiber, gave the same melting profile as intact nuclei with regard to the relative magnitudes of Tn-8 and Tn-10. The effect of salt concentration on the melting profiles and the insensitivity of Tn-8 and Tn-10 to H1 histone removal supports the notion that Tn-7 is the collapse of the nucleosome while Tn-8 and Tn-10 are respectively the unstacking of nucleotide bases in relaxed chromatin and supercoiled chromatin. The identification of Tn-8 as the unstacking of bases in relaxed DNA, and Tn-10 as unstacking in supercoiled DNA, shows that scanning calorimetry can be used to measure the state of repair of DNA in the nucleus. The gain in Tn-8 at the expense of Tn-10 that is seen as the mitotic index drops and differentiation occurs suggests that nicks accumulate in the DNA, perhaps because the gross aggregation of the inactive majority of the chromatin makes it inaccessible to repair enzymes.  相似文献   

20.
The influence of inverted repeat sequences on the melting transitions of linear DNAs has been examined. Derivative melting curves (DMC) of a 514 base pair (bp) DNA, seven subfragments of this DNA, and four other DNAs have been compared to predictions of DNA melting theory. The 514-bp DNA contains three inverted repeat sequences that can form cruciform structures in supercoiled DNA. We refer to these sequences as c-inverted repeats. Previous work showed that the DMC of this DNA, unlike a number of other DNAs, is not accurately predicted by DNA melting theory. Since the theoretical model does not include hairpin-like structures, it was suggested that hairpin or cruciform formation in these inverted repeats may be responsible for this discrepancy. Our results support this hypothesis. Predicted DMCs are in good agreement with DNAs with no inverted repeats, or inverted repeats not evident in supercoiled DNA. Differences between the theoretical and experimental Tm's are less than or equal to 0.3 degrees C. DNA molecules that contain one or more of the three c-inverted repeats are not as accurately predicted. Experimental Tm values are lower than predicted values by 0.7-3.8 degrees C. It is concluded that some inverted repeat sequences can form hairpin-like structures during the melting of linear DNAs. These structures appear to lower overall DNA stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号