首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The current studies demonstrate that MOPC-315 tumor cells secrete large amounts of interleukin-10 (IL-10), which contributes to the inhibitory activity of MOPC-315 culture supernatants for the in vitro generation of antitumor cytotoxicity by MOPC-315-immune spleen cells. Moreover, addition of neutralizing monoclonal anti-IL-10 antibody to the in vitro stimulation cultures of cells from the tumor infiltrated spleens of mice bearing a large MOPC-315 tumor resulted in the generation of enhanced anti-MOPC-315 cytotoxicity. In contrast, addition of monoclonal anti-IL-10 antibody to the in vitro stimulation cultures of splenic cells from mice that are in the final stages of immune-mediated tumor eradication as a consequence of low-dose melphalan (l-phenylalanine mustard; L-PAM) therapy (and whose spleens no longer contain metastatic tumor cells) did not lead to enhancement in the in vitro generation of antitumor cytotoxicity. The cessation of IL-10 secretion as a consequence of low-dose L-PAM therapy of MOPC-315 tumor bearers was found to be accompanied by the acquisition of the ability to secrete interferon (IFN) by the splenic cells. In addition, by day 2 after low-dose L-PAM therapy a drastic decrease in the amount of IL-10 secreted by the s.c. tumor nodules was noted, which preceded the accumulation of tumor-infiltrating lymphocytes capable of secreting IFN. Thus, low-dose L-PAM therapy of mice bearing a large MOPC-315 tumor leads to a shift in cytokine production from a Th2-type cytokine to a Th1-type cytokine, and it is conceivable that this shift in cytokine production plays an important role in the low-dose L-PAM-induced acquisition of antitumor immunity by hitherto immunosuppressed mice bearing a large MOPC-315 tumor.Supported by research grant IM-435 from the American Cancer Society and CA54413 from the National Cancer InstituteIn partial fulfillment of the requirements for the Doctor of Philosophy DegreeRecipient of career development award CA-01350 from the National Cancer Institute  相似文献   

2.
Summary The authors examined interleukin-2 (IL-2) production and interferon (IFN) production of peripheral blood mononuclear cells in 28 patients with renal cell carcinoma and 17 control subjects. The peripheral blood was obtained prior to the initiation of therapeutic procedures. The patients were divided into two groups according to tumor size, 5 cm and >5 cm. The production of IL-2 and IFN was measured by immunoradiometric assay. As a result, in the patients with tumors >5 cm, IL-2 and IFN production was impaired. However, in the patients with tumors 5 cm, IFN production was enhanced, though IL-2 production was not significantly different from that of the control subjects. There was no significant correlation between IL-2 production and IFN production.  相似文献   

3.
The course of metastatic renal cell carcinoma may be positively influenced by immunotherapeutic agents. We report a case of renal cell carcinoma showing a complete response to once-weekly low-dose s. c. interferon- (INF) treatment in multiple metastatic sites (lung, chest wall, abdomen, vertebral body), but concomitantly developing a solitary brain metastasis. High initial interleukin-6 (IL-6) levels returned to normal during IFN treatment suggesting that IFN may have interrupted an autocrine IL-6/IL-6-receptor loop of the tumor cells. The duration of complete remission in the extracerebral sites is now 46+ months. IFN may be less active beyond the blood/brain barrier.  相似文献   

4.
Summary Few clinical responses have occurred in preliminary studies using the cytokines tumor necrosis factor (TNF) or interferon (IFN) in cancer patients. This may be related to the observation that many malignant cell lines are resistant to lysis by these cytokinesin vitro. Resistance to lysis by TNF or IFN in many cells is controlled by a protein-synthesis-dependent mechanism, such that when protein synthesis is inhibited cells become sensitive to lysis by these cytokines. Because there is some evidence that TNF and IFN act through different lytic mechanisms and are opposed by different resistance mechanisms, we treated a panel of eight cell lines, five derived from human cervical carcinomas (ME-180, MS751, SiHa, HT-3, and C-33A) and three derived from ovarian carcinomas (Caov-3, SK-OV-3, and NIH: OVCAR-3) with both TNF and IFN to determine whether such combination treatment might maximizein vitro cell lysis. Our results showed that pretreatment with IFN followed by exposure to TNF in the presence of protein synthesis inhibitors increased lysis of seven of the eight cell lines above that seen with either TNF or IFN and inhibitors of protein synthesis. Only the cell line C-33A was resistant to lysis by TNF and IFN, when exposed to these agents both alone and in combination with protein synthesis inhibitors. Clinically, combining the cytokines TNF and IFN with protein synthesis inhibitors may maximize thein vivo lytic effects of these cytokines.Supported by American Cancer Society Career Development Award 90-221  相似文献   

5.
Summary Expression of class I and class II major histocompatibility complex antigens on a human small-cell lung cancer cell line and its multidrug-resistant variant was examined before and after exposure to interferon (IFN) and IFN by flow cytometry. Neither IFN nor IFN induced class II antigen expression on the drug-sensitive or resistant cell line. Induction of class I antigen expression along with an inhibition of proliferation was observed in both cell lines after IFN treatment. On the other hand, IFN treatment resulted in growth inhibition and enhancement of class I antigen expression in the sensitive cell line but not the resistant cell line. The differential response of the two cell lines to IFN cannot be directly attributed to the acquisition of drug resistance but it suggests that further investigation of the possibility that drug-sensitive and resistant small-cell lung tumors may respond differently to immunotherapies that include IFN is warranted.  相似文献   

6.
Summary The expression of the monocyte membrane glycoprotein CD14 was measured and related to the serum interferon (IFN) concentration in thirteen patients with disseminated cancer during treatment with human recombinant interferon (rIFN). The drug was administered by continuous subcutaneous infusion using an escalating dose schedule, starting at 50 µg/day or 100 µg/day and increasing weekly up to 600 µg/day, if tolerated. Treatment was continued at a mean maximal tolerated dose of 200 µg/day for a median duration of 43 days. Serum IFN concentration and monocyte CD14 antigen expression (immunofluorescence with the monoclonal antibody LeuM3 and fluorescence-activated cell sorting analysis) were determined weekly. The serum IFN concentration was positively correlated with the rIFN dose (P <0.05). Therapy induced a dose-dependant enhancement of CD14 antigen expression. The increase in mean CD14 fluorescence intensity was on average 60% after 3 weeks of treatment at a mean dose of 220 µg rIFN/day and was reversed after withdrawal of therapy. Patients with a rapidly rising serum IFN concentration (starting dose 100 µg/day) showed a smaller increment in CD14 fluorescence intensity than those with slowly rising serum IFN levels (starting dose 50 µg/day). Since rIFN is known to down-regulate CD14 antigen expression in vitro, monocytes from patients off therapy and from healthy volunteers were cultured with this cytokine. A similar decrease of CD14 fluorescence was observed in both groups. In patients several factors, such as IFN concentration, duration of drug effect and type of serum, were evaluated and could not explain the discrepant in vivo and in vitro findings. In conclusion, the monocyte marker CD14 was found to be differentially regulated by rIFN in vivo and in vitro. In vivo, secondary mediators, induced by rIFN and acting on a constantly renewed cell population, may contribute to the enhanced CD14 expression.  相似文献   

7.
Summary Human renal cell cancer (RCC) cell lines, ACHN and KRC/Y, with or without exposure to cytokines, were examined for their susceptibility to lymphokine-activated killer (LAK) cells. Flow-cytometric analysis demonstrated constitutional expression of class I antigen on both cell lines, which was enhanced by interferon (IFN), IFN and tumor necrosis factor (TNF). A 4-h51Cr-release cytotoxicity assay demonstrated that pretreatment of both cell lines with IFN or IFN, but not with TNF, decreased their susceptibility to LAK cells. IFN also decreased susceptibility to natural killer cells in a 16-h51Cr-release cytotoxicity assay. IFN treatment decreased the susceptibility of ACHN cells in a dose-dependent manner. Cold-target competition assay clearly showed that IFN- but not TNF-pretreated cells compete less effectively than do untreated target cells. Pretreatment with IFN, however, increased expression of intercellular adhesion molecule-1 (ICAM-1) to a degree comparable to that with TNF. Northern blot analyses using a 520-base-pair ICAM-1 cDNA as a probe demonstrated that more 3.3-kb mRNA is expressed in IFN- and TNF-pretreated cells. These results suggest that IFN-treated RCC cell lines may reduce their ability to be recognized by LAK cells, and that IFN-induced protection of RCC cell lines against LAK cells may depend upon a mechanism independent of the expression of class I antigens or ICAM-1 on tumor cells.  相似文献   

8.
Summary The purpose of these studies was to determine whether stimulated human lymphocytes produce lymphokines distinct from IFN, that can activate human blood monocytes to lyse tumor cells. We undertook this investigation because of the controversy concerning whether MAF and IFN are the same molecule. Crude lymphokine preparations prepared from normal human mononuclear cells incubated with Con A and rich in MAF activity also contained 1000 U/ml IFN as measured by the virus neutralization assay. However, the induction of tumoridical activity in monocytes by the lymphokine preparation could be dissociated from the IFN activity, based on the following data: (1) Heat treatment (100 °C for 2 min) removed the antiviral activity of the lymphokine yet did not diminish its MAF-like activity when measured in a 72 h cytotoxicity assay against 125I IUdR-labeled human A375 melanoma cells. (2) Likewise, treatment of this lymphokine preparation with a twofold excess of anti-IFN antibody neutralized antiviral activity but once again had no effect on its ability to activate monocyte tumoricidal function. In contrast, both heat treatment and anti-IFN antibody abolished monocyte activation by equivalent units of human recombinant IFN. Taken together, these data suggest that there is a molecule(s) distinct from IFN which can activate human monocytes for tumoricidal function. Furthermore, this dissociation of MAF and IFN activity was dependent on the use of a long-term (72 h) assay, since activation of tumoricidal activity in an 18–24 h assay appeared to be attributable solely to IFN.  相似文献   

9.
Summary The effect of the thymic hormone, THF-2, on the immunocompetence of 5-fluorouracil (5-FU)-treated BALB/c mice, bearing MOPC-315 tumor, was examined. Treatment of noninoculated or tumor-bearing mice with THF-2 after 5-FU injection, resulted in an increase in the antibody response to sheep red blood cells and in the allogeneic response in spleen cell cultures and had no effect on the concanavalin-A-induced interleukin-2 secretion beyond that caused by 5-FU alone. Treatment with either 5-FU alone or 5-FU and THF-2 resulted in restoration to normal values of Lytl- and L3T4-positive populations in tumor-bearing mice. THF-2 prolonged the survival time of mice bearing MOPC-315 tumor beyond that observed in mice treated with 5-FU alone.  相似文献   

10.
The cell-surface expression of major histocompatibility (MHC) antigens and the adhesion molecule intercellular adhesion molecule 1 (ICAM-1) is essential for target cell recognition by T lymphocytes. The expression of both classes of molecule is induced by various cytokines, notably interferon (IFN). Since transforming growth factor (TGF) has been recently reported to antagonise HLA-DR induction by IFN we have examined, using a number of murine and human cell lines, the effect of TGF on IFN-induced MHC class I and class II and ICAM-1 expression. All of the cell lines tested expressed elevated class I MHC following IFN treatment. Class II MHC induction was seen on most but not all of the cells, the exceptions being among a panel of human colorectal carcinoma cell lines. A striking difference between cells of different origin was noted in the response to TGF. TGF was found to antagonise IFN-induced class I and class II MHC expression on C3H 10T1/2 murine fibroblasts, early-passage BALB/c mouse embryo fibroblasts, a murine oligodendroglioma cell line, and on MRC5 human fibroblasts and two human glioblastoma cell lines. Class II MHC was much more strongly inhibited (sometimes completely) than class I MHC. TGF also inhibited induction of class I MHC expression by IFN. However, TGF did not inhibit class I or class II MHC induction by IFN in any of the nine colorectal carcinoma cell lines, although two of five of the lines tested were growth-inhibited by TGF. On the other hand, human ICAM-1 induction by IFN was not affected by simultaneous treatment with TGF in any of the cell lines. The down-regulation of IFN-induced MHC antigens by TGF is not, therefore, the result of a general antagonism of IFN. Retinoic acid has recently been reported to induce ICAM-1 expression on human tumour cells. We have confirmed this observation on MRC5, and the two human glioblastoma cell lines, however six colorectal carcinoma cell lines tested did not respond. In contrast to IFN-induced ICAM-1 expression, retinoic-acid-induced ICAM-1 expression was inhibited by TGF on two of the three responsive lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号