首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A molecular genetic map was constructed and an electrophoretic karyotype was resolved for Cochliobolus sativus, the causal agent of spot blotch of barley and wheat. The genetic map consists of 27 linkage groups with 97 amplified fragment length polymorphism (AFLP) markers, 31 restriction fragment length polymorphism (RFLP) markers, two polymerase chain reaction amplified markers, the mating type locus (CsMAT), and a gene (VHv1) conditioning high virulence on barley cv. Bowman. These linkage groups covered a map distance of 849 cM. The virulence gene VHv1 cosegregated with six AFLP markers and was mapped on one of the major linkage groups. Fifteen chromosome-sized DNAs were resolved in C. sativus isolates ND93-1 and ND9OPr with contour-clamped homogeneous electric field (CHEF) electrophoresis combined with telomere probe analysis of comigrating chromosome-sized DNAs. The chromosome sizes ranged from 1.25 to 3.80 Mbp, and the genome size of the fungus was estimated to be approximately 33 Mbp. By hybridizing genetically mapped RFLP and AFLP markers to CHEF blots, 25 of the 27 linkage groups were assigned to specific chromosomes. The barley-specific virulence locus VHv1 was localized on a chromosome of 2.80 Mbp from isolate ND9OPr in the CHEF gel. The total map length of the fungus was estimated to be at least 1,329 cM based on the map distance covered by the linked markers and the estimated gaps. Therefore, the physical to genetic distance ratio is approximately 25 kb/cM. Construction of a high-resolution map around target loci will facilitate the cloning of the genes conferring virulence and other characters in C. sativus by a map-based cloning strategy.  相似文献   

2.
Cochliobolus sativus is a plant pathogenic fungus that causes spot blotch on barley and wheat. Virulence of a pathotype-2 isolate (ND90Pr) on barley cultivar Bowman was previously determined to be controlled by a single locus. To identify DNA markers associated with this virulence locus, amplified fragment length polymorphism (AFLP) analysis was conducted on 104 progeny isolates derived from a cross between isolates ND90Pr (exhibiting high virulence on Bowman) and ND93-1 (exhibiting low virulence on Bowman). Among 115 AFLP markers identified, 14 were linked to the virulence locus VHv1 in isolate ND90Pr, six of which co-segregated with VHv1. Two (E-AG/M-CA-207 and E-AG/M-CG-121) of the six co-segregating AFLP markers were cloned and used to probe genomic DNAs from the fungal parents and progeny. Both markers hybridized only with DNAs from ND90Pr and the virulent progeny. These two cloned markers were also used as probes to survey field isolates of C. sativus collected from different regions of the world and again only hybridized to DNAs from isolates that had the same virulence phenotype as ND90Pr. The results of this study indicate that E-AG/M-CA-207 and E-AG/M-CG-121 are closely linked to VHv1 and are unique to isolates carrying the virulence locus. Development of a linkage group, coupled with the identification of closely linked molecular markers, will facilitate the cloning of the virulence gene VHv1 in C. sativus by map-based cloning.  相似文献   

3.
Studies on the wide-host-range fungus Nectria haematococca MP VI have shown a linkage between virulence on pea and five of nine PDA genes that encode the ability to detoxify the pea phytoalexin, pisatin. Most of the PDA genes are on chromosomes of approximately 1.6 megabases (Mb) and two of these genes, PDA1-2 and PDA6-1, have been demonstrated to reside on approximately 1.6-Mb chromosomes that can be lost during meiosis. Prior studies also have shown that the dispensable chromosome carrying PDA6-1 contains a gene (MAK1) necessary for maximum virulence on chickpea. The present study evaluated whether the other approximately 1.6-Mb chromosomes that carry PDA genes also are dispensable, their relationship to each other, and whether they contain genes for pathogenicity on hosts other than pea or chickpea. DNA from the PDA1-1 chromosome (associated with virulence on pea) and the PDA6-1 chromosome (associated with virulence on chickpea) were used to probe blots of contour-clamped homogeneous electric field (CHEF) gels of isolates carrying different PDA genes and genetically related Pda- isolates. All of the approximately 1.6-Mb PDA-bearing chromosomes hybridized with both probes, indicating that they share significant similarity. Genetically related Pda-progeny lacked chromosomes of approximately 1.6 Mb and there was no significant hybridization of any chromosomes to the PDA1-1 and PDA6-1 chromosome probes. When isolates carrying different PDA genes and related Pda- isolates were tested for virulence on carrot and ripe tomato, there was no significant difference in lesion sizes produced by Pda+ and Pda- isolates, indicating that genes for pathogenicity on these hosts are not on the PDA-containing chromosomes. These results support the hypothesis that the chromosomes carrying PDA genes are dispensable and carry host-specific virulence genes while genes for pathogenicity on other hosts are carried on other chromosomes.  相似文献   

4.
Spot blotch, caused by Cochliobolus sativus, is an economically important disease of barley. To identify genetic loci conferring resistance to three different pathotypes of C. sativus, a worldwide barley core collection (BCC) consisting of 1480 accessions from the USDA National Small Grains Collection were genotyped with the barley 9k Illumina Infinium iSELECT assay and phenotyped at the seedling stage with three C. sativus isolates ND85F (pathotype 1), ND90Pr (pathotype 2), and ND4008 (pathotype 7). Association mapping analysis was performed with the Whole_Panel containing 1480 barley accessions, as well as Two-rowed_Panel and Six-rowed_Panel consisting of 621 two-rowed and 857 six-rowed barley accessions, respectively. For resistance to isolate ND4008, one quantitative trait locus (QTL, QRcs-6H-P7) was detected in all three panels. Three other QTL (QRcs-1H-P7, QRcs-2H-P7, and QRcs-3H-P7) were detected in Whole_Panel, Six-rowed_Panel, and Two-rowed_Panel, respectively. For resistance to isolate ND90Pr, one QTL (QRcs-1H-P2) was identified in the Whole_Panel and the Two-rowed_Panel, and the other QTL (QRcs-6H-P2) was only identified in the Six-rowed_Panel. For resistance to isolate ND85F, three QTL (QRcs-1H-P1, QRcs-3H-P1, QRcs-7H-2-P1) were detected in all three panels, and one QTL (QRcs-7H-1-P1) was only detected in the Two-rowed_Panel. Among the ten QTL detected, four (QRcs-1H-P1, QRcs-3H-P1, QRcs-7H-2-P1, and QRcs-1H-P2) were mapped to chromosome regions containing previously identified QTL for spot blotch resistance, while six (QRcs-1H-P7, QRcs-2H-P7, QRcs-3H-P7, QRcs-6H-P7, QRcs-6H-P2, and QRcs-7H-1-P1) were novel. The SNP markers associated with the QTL identified in this study will be useful for breeding barley cultivars with resistance to multiple pathotypes of C. sativus.  相似文献   

5.

Key message

We identified, fine mapped, and physically anchored a dominant spot blotch susceptibility gene Scs6 to a 125 kb genomic region containing the Mla locus on barley chromosome 1H.

Abstract

Spot blotch caused by Cochliobolus sativus is an important disease of barley, but the molecular mechanisms underlying resistance and susceptibility to the disease are not well understood. In this study, we identified and mapped a gene conferring susceptibility to spot blotch caused by the pathotype 2 isolate (ND90Pr) of C. sativus in barley cultivar Bowman. Genetic analysis of F1 and F2 progeny as well as F3 families from a cross between Bowman and ND 5883 indicated that a single dominant gene (designated as Scs6) conferred spot blotch susceptibility in Bowman. Using a doubled haploid (DH) population derived from a cross between Calicuchima-sib (resistant) and Bowman-BC (susceptible), we confirmed that Scs6, contributed by Bowman-BC, was localized at the same locus as the previously identified spot blotch resistance allele Rcs6, which was contributed by Calicuchima-sib and mapped on the short arm of chromosome 1H. Using a genome-wide putative linear gene index of barley (Genome Zipper), 13 cleaved amplified polymorphism markers were developed from 11 flcDNA and two EST sequences and mapped to the Scs6/Rcs6 region on a linkage map constructed with the DH population. Further fine mapping with markers developed from barley genome sequences and F2 recombinants derived from Bowman?×?ND 5883 and Bowman?×?ND B112 crosses delimited Scs6 in a 125 kb genomic interval harboring the Mla locus on the reference genome of barley cv. Morex. This study provides a foundational step for further cloning of Scs6 using a map-based approach.
  相似文献   

6.
Summary Intergeneric hybridization between four common wheat cultivars, Triticum aestivum L. cultivars Chinese Spring, Norin 12, Norin 61, and Shinchunaga, and cultivated barley, Hordeum vulgare L. cultivars Betzes, Nyugoruden, Harunanijou, and Kinai 5 were carried out in a greenhouse under 15 – 20 °C and long-day (15 h) photoperiod conditions. Two days prior to pollination, a 100 mg/1 2,4-D solution was injected into wheat stems. Among wheat cultivars, Norin 12, Norin 61, and Shinchunaga showed higher crossabilities than that of Chinese Spring, suggesting the presence of crossability gene(s) other than the kr system of Chinese Spring. Variation was also found among the barley cultivars as male parents. Betzes barley showed the highest crossability with wheat. Thus, the cross Norin 12×Betzes showed the highest crossability (8.25%), followed by Norin 61 ×Betzes (6.04%), Shinchunaga×Betzes (5.00%), and Shinchunaga×Kinai 5 (5.00%). The embryos were rescued by culture at 15–20 days after pollination. Seventyfour plants were obtained from 82 embryos. The morphology of the hybrid plants resembled that of wheat parents. Among 60 seedlings observed, 28 had 28 chromosomes, 8 had 21, 23 had aneuploid numbers of chromosomes (22–27), and 1 had 29 chromosomes. About half of the aneuploid hybrids showed mosaicism for chromosome number. By analyzing five isozyme markers of barley chromosomes, the chromosome constitutions of the aneuploid hybrids were determined. Barley chromosomes 1 and 5 were found to be preferentially eliminated in the hybrids, while chromosomes 2 and 4 were eliminated infrequently. The conditions and genetic factors for high crossability and the tendency of barley chromosome elimination are discussed.  相似文献   

7.
Pyricularia grisea is the most destructive and cosmopolitan fungal pathogen of rice and it can also cause disease on other agriculturally important cereals. We determined the number, location and interaction of quantitative trait loci (QTL) associated with resistance to P. grisea isolates obtained from rice (THL142 and THL222) and barley (TH16 and THL80) grown in Thailand. The isolates showed a spectrum of virulence when used to inoculate a series of differentials. We used a reference blast resistance mapping population of rice (IR64 × Azucena). IR64 was highly resistant, and Azucena was highly susceptible, to all four isolates. The numbers of resistant vs. susceptible progeny suggest that the resistance of IR64 is determined by two or three genes with additive effects. The correlation coefficients for all pairwise comparisons of disease severity were high and highest between barley isolates and between rice isolates. Four QTL were detected, one on each of the following chromosomes 2, 8, 9 and 10. IR64 contributed resistance alleles at three of the QTL (chromosomes 2, 8 and 9). Azucena contributed the resistance allele at the QTL on chromosome 10 in response to inoculation with isolate THL142. The results of the QTL analysis support interpretation of the phenotypic frequency distributions regarding the number of genes determining resistance to the four isolates in this population. Our results are novel in adding blast isolates from barley to the catalogue of pathogen specificities to which a gene, or genes, from IR64 confer resistance.  相似文献   

8.
Kamil Hudec 《Biologia》2007,62(3):287-291
Presented study focused on the influence of Cochliobolus sativus isolates origin on pathogenicity towards wheat and barley seedlings in comparison with pathogenicity of certain Fusarium species and Microdochium nivale. The efficacy of fungicide seed treatment against C. sativus was estimated. The C. sativus isolates were collected from different locations and were isolated from wheat, barley and sunflower seeds. The pathogenicity of C. sativus, Fusarium species and M. nivale towards germinating seedlings were expressed as germination (GA) retardation and coleoptile growth rate retardation (CGR). Of wheat only, the CGR was significantly influenced by the isolate origin. The C. sativus isolates obtained from sunflower seeds were the most aggressive. Of the barley seeds, the barley isolates were the most aggressive. Barley was significantly more susceptible to damage by C. sativus isolates than wheat. The pathogenicity of tested fungal species declined in the order: F. culmorum, F. graminearum, C. sativus, F. avenaceum, M. nivale, F. poae for both barley and wheat. The results highlighted high pathogenicity potential of C. sativus equal to that of F. avenaceum and M. nivale. The symptoms of C. sativus on coleoptile and roots were very similar or the same as the symptoms caused by Fusarium species and M. nivale, except of white, pink or red colours. Of wheat sprouts, the fungicide efficacy (FE) against C. sativus declined in the order: tebuconazole + thiram, carboxin + thiram, quazatine, difenoconazole, iprodione + triticonazole (in term of GA) and carboxin + thiram, iprodione + triticonazole, tebuconazole + thiram, difenoconazole, quazatine (in term of CGR). In barley, the FE declined in the order: carboxin + thiram, iprodione + triticonazole, tebuconazole + thiram, difenoconazole, quazatine (in term of GA) and carboxin + thiram, tebuconazole + thiram, difenoconazole, iprodione + triticonazole, quazatine (in term of CGR).  相似文献   

9.
Spot blotch (SB) caused by Cochliobolus sativus has been the major yield‐reducing factor for barley production during the last decade. In this study, the correlation between aggressiveness and in vitro xylanase production of 29 isolates of C. sativus was investigated. Isolate aggressiveness was evaluated in term of lesion form in barley leaves. Additionally, the isolates were compared for their ability to produce in vitro significant levels of xylanase activities when grown in a liquid medium. Aggressive isolates released more xylanase of weakly aggressive isolates. Correlation tests analysis revealed a significant relationship (r = 0.84, r = 0.50; P < 0.01) between the xylanase (per unit fungal mass) and aggressiveness on the two barley cultivars Arabi Abiad and Bowman, respectively. Correlation between the production of this enzyme and the origin of the isolates was not found. The results indicate that the production of xylanase influences the aggressiveness of the isolates of C. sativus towards barley seedlings.  相似文献   

10.
Cucumber, Cucumis sativus L. is the only taxon with 2n = 2x = 14 chromosomes in the genus Cucumis. It consists of two cross‐compatible botanical varieties: the cultivated C. sativus var. sativus and the wild C. sativus var. hardwickii. There is no consensus on the evolutionary relationship between the two taxa. Whole‐genome sequencing of the cucumber genome provides a new opportunity to advance our understanding of chromosome evolution and the domestication history of cucumber. In this study, a high‐density genetic map for cultivated cucumber was developed that contained 735 marker loci in seven linkage groups spanning 707.8 cM. Integration of genetic and physical maps resulted in a chromosome‐level draft genome assembly comprising 193 Mbp, or 53% of the 367 Mbp cucumber genome. Strategically selected markers from the genetic map and draft genome assembly were employed to screen for fosmid clones for use as probes in comparative fluorescence in situ hybridization analysis of pachytene chromosomes to investigate genetic differentiation between wild and cultivated cucumbers. Significant differences in the amount and distribution of heterochromatins, as well as chromosomal rearrangements, were uncovered between the two taxa. In particular, six inversions, five paracentric and one pericentric, were revealed in chromosomes 4, 5 and 7. Comparison of the order of fosmid loci on chromosome 7 of cultivated and wild cucumbers, and the syntenic melon chromosome I suggested that the paracentric inversion in this chromosome occurred during domestication of cucumber. The results support the sub‐species status of these two cucumber taxa, and suggest that C. sativus var. hardwickii is the progenitor of cultivated cucumber.  相似文献   

11.
A barley variety of Ethiopian origin, with a single Mendelian gene con-fering tolerance to barley yellow dwarf virus (BYDV), was equally tolerant to a number of isolates of the virus, whereas a susceptible European barley was more susceptible to isolates transmitted by Rhopalosiphum padi L. than to those transmitted by Macrosiphum (Sitobion) avenae (Fab). However, hybrids between these two varieties homozygous for the Ethiopian tolerance gene were more tolerant to ‘mild’ than to ‘severe’ isolates, irrespective of the vector specificity. The European variety was damaged more severely by all isolates when infected early than when infected late in its development, but the hybrids were damaged more severely by M. awraae-transmitted isolates when infected late. It is suggested that in susceptible plants the concentration, rather than the virulence, of the virus determines disease severity, whereas the reverse is true in plants possessing a gene which reduces virus multiplication. Virus concentration appears to determine the severity of R. padi-transmitted isolates, while virulence determines the severity of M. avenae-transmitted isolates. The latter would also seem to be adapted towards late infection.  相似文献   

12.
Chromosome painting is a powerful technique for chromosome and genome studies. We developed a flexible chromosome painting technique based on multiplex PCR of a synthetic oligonucleotide (oligo) library in cucumber (Cucumis sativus L., 2n = 14). Each oligo in the library was associated with a universal as well as nested specific primers for amplification, which allow the generation of different probes from the same oligo library. We were also able to generate double‐stranded labelled oligos, which produced much stronger signals than single‐stranded labelled oligos, by amplification using fluorophore‐conjugated primer pairs. Oligos covering cucumber chromosome 1 (Chr1) and chromosome 4 (Chr4) consisting of eight segments were synthesized in one library. Different oligo probes generated from the library painted the corresponding chromosomes/segments unambiguously, especially on pachytene chromosomes. This technique was then applied to study the homoeologous relationships among cucumber, C. hystrix and C. melo chromosomes based on cross‐species chromosome painting using Chr4 probes. We demonstrated that the probe was feasible to detect interspecies chromosome homoeologous relationships and chromosomal rearrangement events. Based on its advantages and great convenience, we anticipate that this flexible oligo‐painting technique has great potential for the studies of the structure, organization, and evolution of chromosomes in any species with a sequenced genome.  相似文献   

13.
Chromosome painting based on fluorescence in situ hybridization (FISH) has played an important role in chromosome identification and research into chromosome rearrangements, diagnosis of chromosome abnormalities and evolution in human and animal species. However, it has not been applied widely in plants due to the large amounts of dispersed repetitive sequences in chromosomes. In the present work, a chromosome painting method for single‐copy gene pools in Cucumis sativus was successfully developed. Gene probes with sizes above 2 kb were detected consistently. A cucumber karyotype was constructed based on FISH using a cocktail containing chromosome‐specific gene probes. This single‐copy gene‐based chromosome painting (ScgCP) technique was performed by PCR amplification, purification, pooling, labeling and hybridization onto chromosome spreads. Gene pools containing sequential genes with an interval less than 300 kb yielded painting patterns on pachytene chromosomes. Seven gene pools corresponding to individual chromosomes unambiguously painted each chromosome pair of C. sativus. Three mis‐aligned regions on chromosome 4 were identified by the painting patterns. A probe pool comprising 133 genes covering the 8 Mb distal end of chromosome 4 was used to evaluate the potential utility of the ScgCP technique for chromosome rearrangement research through cross‐species FISH in the Cucumis genus. Distinct painting patterns of this region were observed in C. sativus, C. melo and C. metuliferus species. A comparative chromosome map of this region was constructed between cucumber and melon. With increasing sequence resources, this ScgCP technique may be applied on any other sequenced species for chromosome painting research.  相似文献   

14.
Summary The electrophoretic karyotiype of 11 strains of the phytophatogenic fungus Septoria nodorum has been established by pulsed field gel electrophoresis with the CHEF DRII system. Each strain had a similar overall karyotype with 14–19 chromosomes being resolved in the size interval between approximately 0.5 and 3.5 megabase pairs (Mb). However, there were clear differences in karyotype both between and within groups of strains adapted to wheat or to barley. Considerable karyotype variation was apparent even among 6 wheat-adapted strains isolated from the same population. Only 2 strains possessed identical karyotypes; these were isolated from the same leaf and were heterokaryon-compatible and are probably independent isolates of the same clone.  相似文献   

15.
Common root rot (CRR) and spot blotch, caused by Cochliobolus sativus (Ito and Kurib.) Drechsl. ex Dast., are important diseases of barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) worldwide. However, the population biology of C. sativus is still poorly understood. In this study, the genetic structure of three C. sativus populations, consisting of isolates sampled respectively from barley leaves (BL), barley roots (BR) and wheat roots (WR) in North Dakota, was analysed with amplified fragment length polymorphism (AFLP) markers. A total of 127 AFLP loci were generated among 208 C. sativus isolates analysed with three primer combinations. Gene diversity (= 0.277–0.335) were high in all three populations. Genetic variation among C. sativus individuals within population accounted for 74%, whereas 26% of the genetic variation was explained among populations. Genetic differentiation was high (ØPT = 0.261, corrected = 0.39), whereas gene flow (Nm) ranged from 1.27 to 1.56 among the three populations analysed. The multilocus linkage disequilibrium (LD) (= 0.076–0.117) was moderate in C  sativus populations. Cluster analyses indicate that C. sativus populations differentiated according to the hosts (barley and wheat) and tissues (root and leaf) although generalists also exist in North Dakota. Crop breeding may benefit from combining genes for resistance against both specialists and generalists of C. sativus.  相似文献   

16.
The single‐spore isolates ‘e3’ and ‘e6’ of Plasmodiophora brassicae with different virulence patterns were distinguished by restriction fragment length polymorphisms in fingerprint‐like patterns and by electrophoretic karyotypes using repetitive fragments as hybridization probes. These molecular tools were used to characterize a set of isolates originated from an infected root, which was inoculated with a mixture of the two single‐spore isolates (e3 and e6). Spores harvested from mixed‐infected roots were used to establish 53 new single‐spore isolates. All these single‐spore isolates revealed parental patterns according to their molecular fingerprints and their virulence pattern. No sexual recombination could be detected with repetitive molecular probes. However, one isolate (M36ES49) showed the same fingerprint pattern and virulence pattern but different sizes of small chromosomes than the parental type ‘e6’, which is taken as an indication of chromosome rearrangement during the infection cycle.  相似文献   

17.
Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) is the fungal pathogen responsible for spot blotch in barley (Hordeum vulgare L.) and occurs worldwide in warmer, humid growing conditions. Current Australian barley varieties are largely susceptible to this disease and attempts are being made to introduce sources of resistance from North America. In this study we have compared chromosomal locations of spot blotch resistance reactions in four North American two-rowed barley lines; the North Dakota lines ND11231-12 and ND11231-11 and the Canadian lines TR251 and WPG8412-9-2-1. Diversity arrays technology-based PCR, expressed sequence tag and SSR markers have been mapped across four populations derived from crosses between susceptible parental lines and these four resistant parents to determine the location of resistance loci. Quantitative trait loci (QTL) conferring resistance to spot blotch in adult plants (APR) were detected on chromosomes 3HS and 7HS. In contrast, seedling resistance (SLR) was controlled solely by a locus on chromosome 7HS. The phenotypic variance explained by the APR QTL on 3HS was between 16 and 25% and the phenotypic variance explained by the 7HS APR QTL was between 8 and 42% across the four populations. The SLR QTL on 7HS explained between 52 and 64% of the phenotypic variance. An examination of the pedigrees of these resistance sources supports the common identity of resistance in these lines and indicates that only a limited number of major resistance loci are available in current two-rowed germplasm.  相似文献   

18.
Summary In order to determine the extent of polymorphism in barley (Hordeum vulgare), DNA from 48 varieties was analyzed with 23 genomic, single-copy probes, distributed across all seven chromosomes. Upon hybridization to wheat-barley addition lines, the probes showed different degrees of homology compared to the wheat genome. Polymorphisms were detected in the barley genome at a frequency of 43% after digestion with EcoRI, BamHI, and HindIII. Subgroups of spring and winter barley and of two- and six-rowed types showed less diversity which, in most cases, was due to shifts in allelic frequencies. One probe (MWG1H504) hybridized to an EcoRI restriction fragment exclusively observed in winter barley. A comparison of six different restriction enzymes revealed clear differences with regard to their efficiency in detecting polymorphisms. The respective frequencies were between 13% (HindIII) and 37% (EcoRV). A significant correlation between the efficiency of a restriction enzyme and the mean fragment size detected by the different probes identified insertion/deletion events as the major factor causing polymorphism in barley.  相似文献   

19.
A chromosome-specific painting technique has been developed which combines the most recent approaches of the companion disciplines of molecular cytogenetics and genome research. We developed seven oligonucleotide (oligo) pools derivd from single-copy sequences on chromosomes 1 to 7 of barley (Hordeum vulgare L.) and corresponding collinear regions of wheat (Triticum aestivum L.). The seven groups of pooled oligos comprised between 10 986 and 12 496 45-bp monomers, and these then produced stable fluorescence in situ hybridization (FISH) signals on chromosomes of each linkage group of wheat and barley. The pooled oligo probes were applied to high-throughput karyotyping of the chromosomes of other Triticeae species in the genera Secale, Aegilops, Thinopyrum, and Dasypyrum, and the study also extended to some wheat-alien amphiploids and derived lines. We demonstrated that a complete set of whole-chromosome oligo painting probes facilitated the study of inter-species chromosome homologous relationships and visualized non-homologous chromosomal rearrangements in Triticeae species and some wheat-alien species derivatives. When combined with other non-denaturing FISH procedures using tandem-repeat oligos, the newly developed oligo painting techniques provide an efficient tool for the study of chromosome structure, organization, and evolution among any wild Triticeae species with non-sequenced genomes.  相似文献   

20.
Knowledge of the virulence of a pathogen population and recognition of the risks of changes in the virulence spectrum are essential in breeding crops for disease resistance. Sexual recombination in a pathogen increases the level of genotypic diversity and can influence the virulence spectrum. This study aimed to determine how sexual recombination can change virulence of the barley pathogen Pyrenophora teres and whether the barley cultivation system, no‐tillage or normal tillage, influences P. teres virulence. The inheritance of avirulence/virulence in P. teres following sexual reproduction was studied in three artificially created pathogen populations. The first was a product of crossing two net forms of the pathogen, and the second and the third were products of crossing net and spot forms. None of the progeny generated resembled the parents exactly. The average similarity of the progeny isolates of the net by net cross with the parental type, based on avirulence/virulence tests, was 92%. That for net and spot form progenies was 58% in comparison with the net form parents and 73% with the spot form parents. The virulence reactions of the progeny isolates did not correlate with morphological traits of the isolates: growth rate on agar, spore production, spore width, spore length and numbers of septa per conidium. To study the effect of the barley cultivation method on P. teres virulence, 313 single‐spore cultures were obtained from barley fields. Two hundred and seventy‐six of the isolates represented the spot form and 37 represented the net form of P. teres. No association was established between the tillage method and virulence for either the net form or the spot form isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号