首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bread wheat is an allohexaploid with genome composition AABBDD. Phytochrome C is a gene involved in photomorphogenesis that has been used extensively for phylogenetic analyses. In wheat, the PhyC genes are single copy in each of the three homoeologous genomes and map to orthologous positions on the long arms of the group 5 chromosomes. Comparative sequence analysis of the three homoeologous copies of the wheat PhyC gene and of some 5 kb of upstream region has demonstrated a high level of conservation of PhyC, but frequent interruption of the upstream regions by the insertion of retroelements and other repeats. One of the repeats in the region under investigation appeared to have inserted before the divergence of the diploid wheat genomes, but was degraded to the extent that similarity between the A and D copies could only be observed at the amino acid level. Evidence was found for the differential presence of a foldback element and a miniature inverted-repeat transposable element (MITE) 5′ to PhyC in different wheat cultivars. The latter may represent the first example of an active MITE family in the wheat genome. Several conserved non-coding sequences were also identified that may represent functional regulatory elements. The level of sequence divergence (Ks) between the three wheat PhyC homoeologs suggests that the divergence of the diploid wheat ancestors occurred some 6.9 Mya, which is considerably earlier than the previously estimated 2.5–4.5 Mya. Ka/Ks ratios were <0.15 indicating that all three homoeologs are under purifying selection and presumably represent functional PhyC genes. RT-PCR confirmed expression of the A, B and D copies. The discrepancy in evolutionary age of the wheat genomes estimated using sequences from different parts of the genome may reflect a mosaic origin of some of the Triticeae genomes.  相似文献   

2.
Evidence is presented that in the R and P genomes (Secale cereale andAgropyron cristatum, respectively) of theTriticeae there exist closely related 350-family DNA sequences in the terminal heterochromatin. This observation is compared to the relationships between these two genomes derived from a comparison of theNor and5 S DNA loci as well as the available data on morphological characters, chromosome pairing, and isozyme studies. It is concluded that the R and P genomes are not closely related and that the common presence of very similar 350-family DNA sequences reflects the parallel amplification of this family of DNA sequences.  相似文献   

3.
The conservation of the linear order (colinearity) of genetic markers along large chromosome segments in wheat and rice is well established, but less is known about the microcolinearity between both genomes at subcentimorgan distances. In this study we focused on the microcolinearity between a 2.6-cM interval flanked by markers Xcdo365 and Xucw65 on wheat chromosome 6B and rice chromosome 2. A previous study has shown that this wheat segment includes the Gpc-6B1 locus, which is responsible for large differences in grain protein content (GPC) and is the target of a positional cloning effort in our laboratories. Twenty-one recombination events between Xcdo365 and Xucw65 were found in a large segregating population (935 gametes) and used to map 17 genes selected from rice chromosome 2 in the wheat genetic map. We found a high level of colinearity between a 2.1-cM region flanked by loci Xucw75 and Xucw67 on wheat chromosome 6B and a 350-kb uninterrupted sequenced region in rice chromosome arm 2S. Colinearity between these two genomes was extended to the region proximal to Xucw67 (eight colinear RFLP markers), but was interrupted distal to Xucw75 (six non-colinear RFLP markers). Analysis of different comparative studies between rice and wheat suggests that microcolinearity is more frequently disrupted in the distal region of the wheat chromosomes. Fortunately, the region encompassing the Gpc-6B1 locus showed an excellent conservation between the two genomes, facilitating the saturation of the target region of the wheat genetic map with molecular markers. These markers were used to map the Gpc-6B1 locus into a 0.3-cM interval flanked by PCR markers Xucw79 and Xucw71, and to identify five candidate genes within the colinear 64-kb region in rice.  相似文献   

4.
Brownlie JC  Whyard S 《Genetica》2005,125(2-3):243-251
We describe here two new transposable elements, CemaT4 and CemaT5, that were identified within the sequenced genome of Caenorhabditis elegans using homology based searches. Five variants of CemaT4 were found, all non-autonomous and sharing 26 bp inverted terminal repeats (ITRs) and segments (152–367 bp) of sequence with similarity to the CemaT1 transposon of C. elegans. Sixteen copies of a short, 30 bp repetitive sequence, comprised entirely of an inverted repeat of the first 15 bp of CemaT4’s ITR, were also found, each flanked by TA dinucleotide duplications, which are hallmarks of target site duplications of mariner-Tc transposon transpositions. The CemaT5 transposable element had no similarity to maT elements, except for sharing identical ITR sequences with CemaT3. We provide evidence that CemaT5 and CemaT3 are capable of excising from the C. elegans genome, despite neither transposon being capable of encoding a functional transposase enzyme. Presumably, these two transposons are cross-mobilised by an autonomous transposon that recognises their shared ITRs. The excisions of these and other non-autonomous elements may provide opportunities for abortive gap repair to create internal deletions and/or insert novel sequence within these transposons. The influence of non-autonomous element mobility and structural diversity on genome variation is discussed.  相似文献   

5.
The study of the association of the Human Leukocyte Antigen (HLA) alleles and polymorphic retrotransposons such as Alu, HERV, and LTR at various loci within the Major Histocompatibility Complex allows for a better identification and stratification of disease associations and the origins of HLA haplotypes in different populations. This paper provides sequence and association data on two structurally polymorphic MER9-LTR retrotransposons that are located 54 kb apart and in close proximity to the multiallelic HLA-A gene involved in the regulation of the human immune system. Direct DNA sequencing and analysis of the PCR products identified DNA nucleotide variations between the MER9-LTR sequences at the two loci and their associations with HLA-A alleles as potential haplotype and evolutionary markers. All MER9-LTR sequences were haplotypic when associated with common HLA-A alleles. The number of SNP loci was 2.5 times greater for the solo LTR at the AK locus, which is located closer to the HLA-A gene than the solo or 3′ LTR at the HG locus. Our study shows that the nucleotide variations of the MER9-LTR DNA sequences are additional informative markers in fine mapping HLA-A genomic haplotypes for future population, evolutionary, and disease studies.  相似文献   

6.
Short interspersed elements (SINEs) are nonautonomous non-LTR retrotransposons that populate eukaryotic genomes. Numerous SINE families have been identified in animals, whereas only a few have been described in plants. Here we describe a new family of SINEs, named BoS, that is widespread in Brassicaceae and present at ∼2000 copies in Brassica oleracea. In addition to sharing a modular structure and target site preference with previously described SINEs, BoS elements have several unusual features. First, the head regions of BoS RNAs can adopt a distinct hairpin-like secondary structure. Second, with 15 distinct subfamilies, BoS represents one of the most diverse SINE families described to date. Third, several of the subfamilies have a mosaic structure that has arisen through the exchange of sequences between existing subfamilies, possibly during retrotransposition. Analysis of BoS subfamilies indicate that they were active during various time periods through the evolution of Brassicaceae and that active elements may still reside in some Brassica species. As such, BoS elements may be a valuable tool as phylogenetic makers for resolving outstanding issues in the evolution of species in the Brassicaceae family.  相似文献   

7.
Parabiotic ants—ants that share their nest with another ant species—need to tolerate not only conspecific nestmates, but also nestmates of a foreign species. The parabiotic ants Camponotus rufifemur and Crematogaster modiglianii display high interspecific tolerance, which exceeds their respective partner colony and extends to alien colonies of the partner species. The tolerance appears to be related to unusual cuticular substances in both species. Both species possess hydrocarbons of unusually high chain lengths. In addition, Cr. modiglianii carries high quantities of hereto unknown compounds on its cuticle. These unusual features of the cuticular profiles may affect nestmate recognition within both respective species as well. In the present study, we therefore examined inter-colony discrimination within the two parabiotic species in relation to chemical differentiation. Cr. modiglianii was highly aggressive against workers from alien conspecific colonies in experimental confrontations. In spite of high inter-colony variation in the unknown compounds, however, Cr. modiglianii failed to differentiate between intracolonial and allocolonial unknown compounds. Instead, the cuticular hydrocarbons functioned as recognition cues despite low variation across colonies. Moreover, inter-colony aggression within Cr. modiglianii was significantly influenced by the presence of two methylbranched alkenes acquired from its Ca. rufifemur partner. Ca. rufifemur occurs in two varieties (‘red’ and ‘black’) with almost no overlap in their cuticular hydrocarbons. Workers of this species showed low aggression against conspecifics from foreign colonies of the same variety, but attacked workers from the respective other variety. The low inter-colony discrimination within a variety may be related to low chemical differentiation between the colonies. Ca. rufifemur majors elicited significantly more inter-colony aggression than medium-sized workers. This may be explained by the density of recognition cues: majors carried significantly higher quantities of cuticular hydrocarbons per body surface.  相似文献   

8.
Wheat is usually classified as a long day (LD) plant because most varieties flower earlier when exposed to longer days. In addition to LD, winter wheats require a long exposure to low temperatures (vernalization) to become competent for flowering. Here we show that in some genotypes this vernalization requirement can be replaced by interrupting the LD treatment by 6 weeks of short day (SD), and that this replacement is associated with the SD down-regulation of the VRN2 flowering repressor. In addition, we found that SD down-regulation of VRN2 at room temperature is not followed by the up-regulation of the meristem identity gene VRN1 until plants are transferred to LD. This result contrasts with the VRN1 up-regulation observed after the VRN2 down-regulation by vernalization, suggesting the existence of a second VRN1 repressor. Analysis of natural VRN1 mutants indicated that a CArG-box located in the VRN1 promoter is the most likely regulatory site for the interaction with this second repressor. Up-regulation of VRN1 under SD in accessions carrying mutations in the CArG-box resulted in an earlier initiation of spike development, compared to other genotypes. However, even the genotypes with CArG box mutations required LD for a normal and timely spike development. The SD acceleration of flowering was observed in photoperiod sensitive winter varieties. Since vernalization requirement and photoperiod sensitivity are ancestral traits in Triticeae species we suggest that wheat was initially a SD–LD plant and that strong selection pressures during domestication and breeding resulted in the modification of this dual regulation. The down-regulation of the VRN2 repressor by SD is likely part of the mechanism associated with the SD–LD regulation of flowering in photoperiod sensitive winter wheat. These authors contributed equally to this work  相似文献   

9.
The genus Triticum L. includes the major cereal crop, common or bread wheat (hexaploid Triticum aestivum L.), and other important cultivated species. Here, we conducted a phylogenetic analysis of all known wheat species and the closely related Aegilops species. This analysis was based on chloroplast matK gene comparison along with trnL intron sequences of some species. Polyploid wheat species are successfully divided only into two groups – Emmer (sections Dicoccoides and Triticum) and Timopheevii (section Timopheevii). Results reveal strictly maternal plastid inheritance of synthetic wheat amphiploids included in the study. A concordance of chloroplast origin with the definite nuclear genomes of polyploid species that were inherited at the last hybridization events was found. Our analysis suggests that there were two ancestral representatives of Aegilops speltoides Tausch that participated in the speciation of polyploid wheats with B and G genome in their genome composition. However, G genome species are younger in evolution than ones with B genome. B genome-specific PCR primers were developed for amplification of Acc-1 gene.  相似文献   

10.
Torres FP  Fonte LF  Valente VL  Loreto EL 《Genetica》2006,126(1-2):101-110
The hobo transposable element can occur under three forms in the Drosophila genome: as a complete element (also called canonical), as internally deleted copies, or as hobo-related sequences (relics). Some evidence indicated that canonical elements and internally deleted copies are recent acquisitions of Drosophila genomes, while the “relics” are old components, normally degenerated and immobile. Here we present the characterization of a hobo-related sequence, found in the genome of a hypermutable strain of D. simulans, which insertion into the white locus raised a de novo white mutation. It is a shorter hobo related element presenting, overall, roughly 18% of divergence at the DNA level from the canonical hobo, with many indels that make clear this element is defective. However, its ITRs and flanking regions are extremely conserved. This is the first hobo “relic” showed to be mobilizable. We suggest, and point up some evidences, toward the idea that this sequence could have been mobilized by the canonical element. The presence of a similar “relic” element in D. sechellia allows us to suggest that these elements have been maintained mobilizable since the time of divergence between these species.  相似文献   

11.
The (non-LTR) LINE and Ty3-gypsy-type LTR retrotransposon populations of three Vicia species that differ in genome size (Vicia faba, Vicia melanops and Vicia sativa) have been characterised. In each species the LINE retrotransposons comprise a complex, very heterogeneous set of sequences, while the Ty3-gypsy elements are much more homogeneous. Copy numbers of all three retrotransposon groups (Ty1-copia, Ty3-gypsy and LINE) in these species have been estimated by random genomic sequencing and Southern hybridisation analysis. The Ty3-gypsy elements are extremely numerous in all species, accounting for 18–35% of their genomes. The Ty1-copia group elements are somewhat less abundant and LINE elements are present in still lower amounts. Collectively, 20–45% of the genomes of these three Vicia species are comprised of retrotransposons. These data show that the three retrotransposon groups have proliferated to different extents in members of the Vicia genus and high proliferation has been associated with homogenisation of the retrotransposon population.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

12.
Amplification and dispersion of repeated DNA sequences in theTriticeae   总被引:1,自引:0,他引:1  
Four representatives of a family of dispersed repetitive sequences which were prominent and dispersed in the E genome ofThinopyrum elongatum but poorly represented in wheat, were studied in detail. The 1.4kb sequences were present both as part of tandem and more complex arrays and appeared to have resulted from repeated amplification of the sequence and their dispersion throughout the genome. Subcloning of sections of the 1.4 kb sequences resulted in probes which improved the resolution of the E genome from the genomes in wheat and enabled identification of single E genome chromosomes introduced into wheat. The generality of these types of sequences in the tribeTriticeae was confirmed by isolating analogous sequences from the R (rye,Secale cereale), V (Dasypyrum villosum), and N (Psathyrostachys juncea) genomes. — The cloned repetitive sequences from the R, V, and N genomes each showed characteristic fluctuations in amount within the grasses examined in addition to being virtually absent from wheat. It is thus possible that these sequences may provide useful taxonomic indicators for establishing relationships within theTriticeae, as well as valuable probes for tracing alien chromatin introduced into wheat.  相似文献   

13.
Since Jones et al. (2000) drew attention to a "new" type of glume wheat from Neolithic and Bronze Age sites in northern Greece, several finds of this morphologically distinct tetraploid wheat form have been made across central and southeastern Europe. Charred remains of this wheat, dating from 819–1031 cal b.c., have also been discovered in a storage pit at late Bronze Age Stillfried, eastern Austria. As both chaff and grains were found, it was not only possible to match the diagnostic features of the spikelet bases to the "new" form, but also to examine the grains, which are strikingly long, slender and flat. A dorsal ridge is absent and there is no hump above the embryo. The embryo angle is relatively low and compression lines are much more distinct. Within the Stillfried store "new" glume wheat grains were also easily separable from two-grained einkorn and spelt grains. The morphology of the grains is not inconsistent with the suggestion that the "new" type glume wheat might correspond to modern Triticum timopheevi. In Stillfried "new" glume wheat was grown as a winter crop, and it seems to have been cultivated as a maslin (mixed crop) together with T. monococcum (einkorn).  相似文献   

14.
We report the cloning ofhermit, a member of thehAT family of transposable elements from the genome of the Australian sheep blowfly,Lucilia cuprina. Hermit is 2716 bp long and is 49% homologous to the autonomoushobo element,HFL1, at the nucleic acid level.Hermit has 15 bp terminal inverted repeats that share 10 bp with the terminal inverted repeats ofHFL1. Conceptual translation reveals a 583 residue open reading frame (ORF) that is 64% similar and 42% identical to theHFL1 ORF. However, the sequence of thehermit element contains two frameshifts within the putative ORF, indication thathermit is an inactive element. Analysis ofL. cuprina strains from within and outside Australia suggested thathermit is present as a single copy in all the genomes analysed.  相似文献   

15.
Ponce R 《Genetica》2007,131(3):315-324
Transposable elements comprise a considerable part of eukaryotic genomes, and there is increasing evidence for their role in the evolution of genomes. The number of active transposable elements present in the host genome at any given time is probably small relative to the number of elements that no longer transpose. The elements that have lost the ability to transpose tend to evolve neutrally. For example, non-LTR retrotransposons often become 5′ truncated due to their own transposition mechanism and hence lose their ability to transpose. The resulting transposons can be characterized as “dead-on-arrival” (DOA) elements. Because they are abundant and ubiquitous, and evolve neutrally in the location where they were inserted, these DOA non-LTR elements make a useful tool to date molecular events. There are four copies of a “dead-on-arrival” RT1C element on the recently formed Sdic gene cluster of Drosophila melanogaster, that are not present in the equivalent region of the other species of the melanogaster subgroup. The life history of the RT1C elements in the genome of D. melanogaster was used to determine the insertion chronology of the elements in the cluster and to date the duplication events that originated this cluster.  相似文献   

16.
We describe a new family of repetitive elements, named Mimo, from the mosquito Culex pipiens. Structural characteristics of these elements fit well with those of miniature inverted-repeat transposable elements (MITEs), which are ubiquitous and highly abundant in plant genomes. The occurrence of Mimo in C. pipiens provides new evidence that MITEs are not restricted to plant genomes, but may be widespread in arthropods as well. The copy number of Mimo elements in C. pipiens (1000 copies in a 540 Mb genome) supports the hypothesis that there is a positive correlation between genome size and the magnitude of MITE proliferation. In contrast to most MITE families described so far, members of the Mimo family share a high sequence conservation, which may reflect a recent amplification history in this species. In addition, we found that Mimo elements are a frequent nest for other MITE-like elements, suggesting that multiple and successive MITE transposition events have occurred very recently in the C. pipiens genome. Despite evidence for recent mobility of these MITEs, no element has been found to encode a protein; therefore, we do not know how they have transposed and have spread in the genome. However, some sequence similarities in terminal inverted-repeats suggest a possible filiation of some of these mosquito MITEs with pogo-like DNA transposons.  相似文献   

17.
We have sequenced the complete mitochondrial genomes of the spiders Heptathela hangzhouensis and Ornithoctonus huwena. Both genomes encode 13 protein-coding genes, 22 tRNA genes, and 2 ribosomal RNA genes. H. hangzhouensis, a species of the suborder Mesothelae and a representative of the most basal clade of Araneae, possesses a gene order identical to that of Limulus polyphemus of Xiphosura. On the other hand, O. huwena, a representative of suborder Opisthothelae, infraorder Mygalomorphae, was found to have seven tRNA genes positioned differently from those of Limulus. The rrnLtrnL1nad1 arrangement shared by the araneomorph families Salticidae, Nesticidae, and Linyphiidae and the mygalomorph family Theraphosidae is a putative synapomorphy joining the mygalomorph with the araneomorph. Between the two species examined, base compositions also differ significantly. The lengths of most protein-coding genes in H. hangzhouensis and O. huwena mtDNA are either identical to or slightly shorter than their Limulus counterparts. Usage of initiation and termination codons in these protein-coding genes seems to follow patterns conserved among most arthropod and some other metazoan mitochondrial genomes. The sequences of the 3 ends of rrnS and rrnL in the two species are similar to those reported for Limulus, and the entire genes are shortened by about 100–250 nucleotides with respect to Limulus. The lengths of most tRNA genes from the two species are distinctly shorter than those of Limulus and the sequences reveal unusual inferred tRNA secondary structures. Our finding provides new molecular evidence supporting that the suborder Mesothelae is basal to opisthothelids.Reviewing Editor Dr. Rafael Zardoya  相似文献   

18.
The broad adaptability of wheat and barley is in part attributable to their flexible growth habit, in that spring forms have recurrently evolved from the ancestral winter growth habit. In diploid wheat and barley growth habit is determined by allelic variation at the VRN-1 and/or VRN-2 loci, whereas in the polyploid wheat species it is determined primarily by allelic variation at VRN-1. Dominant Vrn-A1 alleles for spring growth habit are frequently associated with mutations in the promoter region in diploid wheat and in the A genome of common wheat. However, several dominant Vrn-A1, Vrn-B1, Vrn-D1 (common wheat) and Vrn-H1 (barley) alleles show no polymorphisms in the promoter region relative to their respective recessive alleles. In this study, we sequenced the complete VRN-1 gene from these accessions and found that all of them have large deletions within the first intron, which overlap in a 4-kb region. Furthermore, a 2.8-kb segment within the 4-kb region showed high sequence conservation among the different recessive alleles. PCR markers for these deletions showed that similar deletions were present in all the accessions with known Vrn-B1 and Vrn-D1 alleles, and in 51 hexaploid spring wheat accessions previously shown to have no polymorphisms in the VRN-A1 promoter region. Twenty-four tetraploid wheat accessions had a similar deletion in VRN-A1 intron 1. We hypothesize that the 2.8-kb conserved region includes regulatory elements important for the vernalization requirement. Epistatic interactions between VRN-H2 and the VRN-H1 allele with the intron 1 deletion suggest that the deleted region may include a recognition site for the flowering repression mediated by the product of the VRN-H2 gene of barley.  相似文献   

19.
A PCR assay was employed to detect sequences homologous to the transposase gene of the Tc1 family of transposable elements in a wide variety of animals. Amplification products of the appropriate size were obtained from most insects (92 of 108 examined; 85%), most other invertebrates (33 of 43; 77%), and many vertebrates (18 of 36; 50%). Sequencing a sample of cloned PCR products from eight insects, one hydra, and two frogs revealed that each had multiple distinct members of the family in their genomes. In the most extreme case, the horn fly Haematobia irritans yielded evidence of seventeen distinct types of Tc1 family elements. Most of the sequences obtained indicate that the elements are within the range of variation already known from fungi, nematodes, files, fish and frogs. Some, however, had novel length variants or divergent sequences, indicating that they represent new subfamilies of these transposons. These results indicate that this family of transposons is extremely common in animal genomes, with multiple representatives in most genomes.  相似文献   

20.
The DNA hypomethylation effect of 5-azacytine (5-AC; a cytosine analog) is widely known. This agent has been used for rRNA gene expression studies of Triticeae amphiploids and hybrids regarding rye rRNA genes suppression caused by the wheat nucleolar dominance phenomenon. However, this situation is reverted by 5-AC treatment which activates rye rRNA gene expression as it has been intensively observed in triticale. For nucleolar dominance studies, we produced F1 multigeneric hybrids (AABBRHch; 2n = 6x = 42) from crosses between the triticale cultivar ‘Corgo’ (AABBRR; 2n = 6x = 42) and the tritordeum cultivars HT9 and HT31 (AABBHchHch; 2n = 6x = 42). The hybrid seeds were germinated in a low concentration of 5-AC (treatment) and in distilled water (nontreated control plants). Silver nitrate staining performed in one 5-AC-treated F1 hybrid revealed a reduced number of interphase cells with seven nucleoli, metaphases with eight Ag-NORs, and neocentromeres in the long arm of three wheat chromosomes. Nontreated hybrids presented six Ag-NORs per mitotic metaphase cell and a maximum of six nucleoli per interphase because of the 1R Ag-NOR suppression. No neocentromere was found in the control F1 hybrid plants. Both treated and nontreated seedlings were subsequently evaluated by fluorescent in situ hybridization performed with genomic and repetitive DNA probes to identify Hch and rye genomes, to confirm Ag-NORs location, and to detect inactive rDNA loci. DAPI counterstaining was also helpful for the detection of neocentromeres in the long arm of three wheat chromosomes. This study allowed us to suggest that 5-AC treatment specifically induced wheat neocentromeres in the F1 multigeneric triticale × tritordeum hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号