首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Abstract.— We show that a predator, the tumbling flower beetle Mordellistena convicta (Coleoptera: Mordellidae), has formed host races in response to a host-plant shift and subsequent host-race formation by its prey, the gall-inducing fly Eurosta solidaginis (Diptera: Tephritidae). This fly has formed two host races, one that induces stem galls on the ancestral host plant, Solidago altissima (Compositae), and another that induces stem galls on the closely related S. gigantea . We found that subpopulations of M. convicta that attack E. solidaginis galls on the different host plants have significantly different emergence times and, although slight, these allochronic differences are consistent across a range of temperatures. More importantly, we found that beetles assortatively mate according to their natal host plants, and female M. convicta preferentially attack and/or their offspring have higher survival in galls on natal host plants. Our data suggest that subpopulations of M. convicta that attack E. solidaginis galls on S. altissima and S. gigantea have formed host races. This is one of the first studies to demonstrate that a host shift and subsequent host-race formation by an herbivorous insect may have resulted in subsequent diversification by one of its natural enemies.  相似文献   

2.
Abstract.  1. Recent research has addressed the function of herbivore-induced plant volatiles in attracting natural enemies of feeding herbivores. While many types of insect herbivory appear to elicit volatile responses, those triggered by gall insects have received little attention. Previous work indicates that at least one gall insect species induces changes in host-plant volatiles, but no other studies appear to have addressed whether gall insects trigger plant indirect defences.
2. The volatile responses of wheat to feeding by larvae of the Hessian fly Mayetiola destructor (Say) (Diptera: Cecidomyiidae) were studied to further explore indirect responses of plants to feeding by gall insects. This specialist gall midge species did not elicit a detectable volatile response from wheat plants, whereas a generalist caterpillar triggered volatile release. Moreover, Hessian fly feeding altered volatile responses to subsequent caterpillar herbivory.
3. These results suggest that Hessian fly larvae exert a degree of control over the defensive responses of their host plants and offer insight into plant-gall insect interactions. Also, the failure of Hessian fly larvae to elicit an indirect defensive response from their host plants may help explain why natural enemies, which often rely on induced volatile cues, fail to inflict significant mortality on M. destructor populations in the field.  相似文献   

3.
Various plant antagonists appear to alter phytohormone levels for their own benefit. Among insects, gall-inducing species appear to influence phytohormones and it is widely believed that they alter levels of indole-3-acetic acid (IAA) to help produce their galls, but evidence exists for only a limited number of species. To further explore the role of phytohormones in gall formation, we measured levels of IAA and abscisic acid (ABA), a hormone involved in plant defenses and that can influence IAA, in tissues of control stems of Solidago altissima (Asteraceae) and those galled by Gnorimoschema gallaesolidaginis (Gelechiidae). This gall-inducing caterpillar species significantly altered the distribution of IAA in galls and the larvae themselves contained high concentrations of IAA. In contrast, the generalist caterpillar Heliothis virescens (Noctuidae) neither altered IAA nor accumulated significant concentrations of IAA, suggesting that G. gallaesolidaginis may have a distinctive influence over IAA. The gall-inducing caterpillars, particularly younger larvae, also contained high levels of ABA but did not increase levels of ABA, which is induced by herbivory of H. virescens. Because G. gallaesolidaginis also does not increase levels of other defense-related hormones, avoiding generalized plant defenses may facilitate gall induction and formation.  相似文献   

4.
Herbivore–carnivore interactions are influenced by the plants on which herbivores feed. Accordingly, dietary generalist herbivores have been shown to experience differential risk of mortality from carnivores on different host-plant species. Here, we investigate whether caterpillar density and host-plant quality play a role in driving variation in generalist forest caterpillar mortality from insect parasitoids using a large-scale, multi-year observational study. A total of 4,500 polyphagous caterpillars were collected from eight host-tree species in Connecticut deciduous forests over 5 years, and frequencies of mortality from insect parasitoids (flies and wasps) were compared across the eight host-plant species for the entire generalist caterpillar assemblage (76 species). Separate comparisons were made using seven numerically dominant generalist species, allowing us to account for variation in caterpillar species-specific parasitism risk. We find significant variation in parasitism frequencies of generalist caterpillars across the eight host-plant species when accounting for variation in caterpillar density. We find no support for an influence of caterpillar density on parasitism and no clear evidence for an effect of host-plant quality on parasitism. Therefore, the results of this study discount the hypotheses that variation in caterpillar density and host-plant quality are responsible for variation in parasitism frequencies across host-plant species. Instead, our findings point to other plant-related characteristics, such as plant-derived parasitoid attractants, which may have robust, community-wide effects.  相似文献   

5.
Feeding by larvae of Heliothis virescens induces cotton, corn and tobacco plants to release blends of volatile organic compounds that differ in constituent proportions from blends released when Helicoverpa zea larvae feed on the same plant species. The same elicitors (and analogs) of plant biosynthesis and release of volatiles, originally identified in oral secretions of Spodoptera exigua larvae, were also found in oral secretions of H. virescens and H. zea. However, relative amounts of these compounds, particularly N-(17-hydroxylinolenoyl)-L-glutamine (volicitin), 17-hydroxylinolenic acid, and N-linolenoyl-L-glutamine, varied among batches of oral secretions, more so in H. virescens than in H. zea. This variation was due to cleavage of the amide bond of the fatty acid-amino acid conjugates by an enzyme, or enzymes, originating in the midgut. The enzymatic activity in guts of H. virescens was significantly greater than that found in guts of H. zea. Furthermore, H. zea frass contains N-linolenoyl-L-glutamine in more than 0.1% wet weight, while this conjugate comprises only 0.003% wet weight in H. virescens frass. These results indicated that physiological differences between these two species affect the proportions of volicitin and its analogs in the caterpillars. Whether this causes different proportions of volatiles to be released by plants damaged by each caterpillar species is yet to be determined.  相似文献   

6.
We tested the hypothesis that forest and prairie populations of the gall-inducing fly, Eurosta solidaginis, have diverged in response to variation in selection by its host plant Solidago altissima, and its natural enemies. A reciprocal cross infection design experiment demonstrated that fly populations from the prairie and forest biomes had higher survival on local biome plants compared to foreign biome host plants. Flies from each biome also had an oviposition preference for their local plants. Each fly population induced galls of the size and shape found in their local biome on host plants from both biomes indicating a genetic basis to the differences in gall morphology. Solidago altissima from the prairie and forest biomes retained significant morphological differences in the common garden indicating that they are genetically differentiated, possibly at the subspecies level. The populations are partially reproductively isolated as a result of a combination of prezygotic isolation due to host-associated assortative mating, and postzygotic isolation due to low hybrid survival. We conclude that E. solidaginis is undergoing diversifying selection to adapt to differences between prairie and forest habitats.  相似文献   

7.
In order to test whether the electroantennogram (EAG) response spectrum of an insect correlates to its degree of host specificity, we recorded EAG responses of two parasitoid species with different degrees of host specificity, Microplitis croceipes (specialist) and Cotesia marginiventris (generalist), to a wide array of odor stimuli including compounds representing green leaf volatiles (GLVs), herbivore-induced plant volatiles (HIPV), ecologically irrelevant (not used by the parasitoid species and their hosts for host location) plant volatiles, and host-specific odor stimuli (host sex pheromones, and extracts of host caterpillar body and frass). We also tested the EAG responses of female moths of the caterpillar hosts of the parasitoids, Heliothis virescens and Spodoptera exigua, to some of the odor stimuli. We hypothesized that the specialist parasitoid will have a narrower EAG response spectrum than the generalist, and that the two lepidopteran species, which are similar in their host plant use, will show similar EAG response spectra to plant volatiles. As predicted, the specialist parasitoid showed greater EAG responses than the generalist to host-specific odor and one HIPV (cis-3-hexenyl butyrate), whereas the generalist showed relatively greater EAG responses to the GLVs and unrelated plant volatiles. We detected no differences in the EAG responses of H. virescens and S. exigua to any of the tested odor.  相似文献   

8.
A plant's responses to attack from particular pathogens and herbivores may result in resistance to subsequent attack from the same species, but may also affect different species. Such a cross-resistance, called immunization or vaccination, can benefit the plant, if the fitness consequences of attack from the initial attacker are less than those from subsequent attackers. Here, we report an example of naturally occurring vaccination of the native tobacco plant, Nicotiana attenuata, against Manduca hornworms by prior attack from the mirid bug, Tupiocoris notatus (Dicyphus minimus), which results from the elicitation of two categories of induced plant responses. First, attack from both herbivore species causes the plants in nature to release predator-attracting volatile organic compounds (VOCs), and the attracted generalist predator, Geocoris pallens, preferentially attacks the less mobile hornworm larvae. Second, attack from both mirids and hornworms increases the accumulation of secondary metabolites and proteinase inhibitors (PIs) in the leaf tissue, which is correlated with the slow growth of Manduca larvae. Mirid damage does not significantly reduce the fitness of the plant in nature, whereas attack from the hornworm reduces lifetime seed production. Consequently, plants that are attacked by mirids realize a significant fitness advantage in environments with both herbivores. The combination of growth-slowing direct defenses and predator-attracting indirect defenses results in greater hornworm mortality on mirid-attacked plants and provides the mechanism of the vaccination phenomenon.  相似文献   

9.
Temporal variation in the acceptability or suitability of plant genotypes to an herbivore has seldom been considered as a possible constraint limiting the adaptation of herbivores to particular plant genotypes, or the occurrence of a positive correlation between host-plant preference and offspring performance. In this study, we used data spanning 12 yr from the same 20 clones of goldenrod ( Solidago altissima ) to examine the temporal variation in oviposition preference and offspring performance of a stem-galling fly, Eurosta solidaginis . We found that the stem galler's preference for, or performance on, the different clones was uncorrelated between years of this study. Furthermore, we found that the relative rankings of clones changed by an average of 31% between successive years. We suggest that these consistently high year-to-year fluctuations in preference and performance by E. solidaginis are likely due to environmental factors (e.g., water and nutrient levels, or abundance of interspecific herbivores) that fluctuate over time and are known to differentially affect the acceptability and suitability of clones to herbivores; i.e., genotype×environment interactions. These results are significant because temporal fluctuations in host-plant preference and performance are likely to favor a more generalized diet by herbivorous insects.  相似文献   

10.
Parasitoids employ different types of host-related volatile signals for foraging and host-location. Host-related volatile signals can be plant-based, originate from the herbivore host or produced from an interaction between herbivores and their plant host. In order to investigate potential sex- and species-related differences in the antennal response of parasitoids to different host-related volatiles, we compared the electroantennogram (EAG) responses of both sexes of the specialist parasitoid, Microplitis croceipes (Cresson), and the generalist, Cotesia marginiventris (Cresson), to varying doses of selected plant-based host-related volatiles: two green leaf volatiles (cis-3-hexenol and hexanal) and three inducible compounds (cis-3-hexenyl acetate, linalool, and (E,E)-alpha-farnesene). Mating had no significant effect on EAG response. Females of both species showed significantly greater EAG responses than conspecific males to green leaf volatiles, which are released immediately after initiation of herbivore feeding damage. In contrast, males showed greater responses than conspecific females to inducible compounds released much later after initial damage. Cotesia marginiventris females and males showed greater EAG responses than counterpart M. croceipes to the tested compounds at various doses, suggesting that the generalist parasitoid shows greater antennal sensitivity than the specialist to the tested host-plant volatiles. These results are discussed in relation to the possible roles of green leaf volatiles and inducible compounds in the ecology of female and male parasitoids.  相似文献   

11.
When plants are sequentially attacked by multiple herbivores, herbivore identity and host specialization can greatly influence the patterns of herbivore–herbivore and plant–herbivore interactions. However, how prior herbivory and the resulting induced plant responses potentially affect subsequent herbivores deserves further investigation. In this study, we conducted a common-garden experiment that manipulated sequential herbivory by the specialist caterpillar Gadirtha fusca Pogue (Lepidoptera: Nolidae) and the generalist caterpillar Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) on Chinese tallow, Triadica sebifera (L.) Small (Euphorbiaceae). We tested how prior exposure to herbivores with different levels of host specialization affected the performance of subsequently arriving con- and heterospecifics, as well as plant growth and defense responses under subsequent herbivory. We found that prior exposure to the specialist G. fusca facilitated the performance of subsequent conspecifics, resulting in a significant decrease in the growth (height and stem diameter at ground level) of tallow plants. However, prior exposure to the generalist S. litura did not affect the feeding of subsequent con- or heterospecifics or the growth of tallow plants. Sequential herbivory by specialist and generalist conspecifics resulted in lower levels of tannins and flavonoids, respectively, in leaves of tallow plants, whereas sequential herbivory by the two species did not affect the levels of tannins or flavonoids, compared to a single damage event. We conclude that herbivore species-specific plant responses appear to be more important than herbivore identity or specialization in determining herbivore–herbivore interactions and plant responses to sequential herbivore attack.  相似文献   

12.
Priming by airborne signals boosts direct and indirect resistance in maize   总被引:1,自引:0,他引:1  
Plants counteract attack by herbivorous insects using a variety of inducible defence mechanisms. The production of toxic proteins and metabolites that instantly affect the herbivore's development are examples of direct induced defence. In addition, plants may release mixtures of volatile organic compounds (VOCs) that indirectly protect the plant by attracting natural enemies of the herbivore. Recent studies suggest that these VOCs can also prime nearby plants for enhanced induction of defence upon future insect attack. However, evidence that this defence priming causes reduced vulnerability to insects is sparse. Here we present molecular, chemical and behavioural evidence that VOC-induced priming leads to improved direct and indirect resistance in maize. A differential hybridization screen for inducible genes upon attack by Spodoptera littoralis caterpillars identified 10 defence-related genes that are responsive to wounding, jasmonic acid (JA), or caterpillar regurgitant. Exposure to VOCs from caterpillar-infested plants did not activate these genes directly, but primed a subset of them for earlier and/or stronger induction upon subsequent defence elicitation. This priming for defence-related gene expression correlated with reduced caterpillar feeding and development. Furthermore, exposure to caterpillar-induced VOCs primed for enhanced emissions of aromatic and terpenoid compounds. At the peak of this VOC emission, primed plants were significantly more attractive to parasitic Cotesia marginiventris waSPS. This study shows that VOC-induced priming targets a specific subset of JA-inducible genes, and links these responses at the molecular level to enhanced levels of direct and indirect resistance against insect attack.  相似文献   

13.
While studies of tri-trophic interactions have uncovered a variety of mechanisms influencing the dietary specialization of insect herbivores, such studies have neglected host-plant selection by generalists. Here, we report an initial investigation on how host-plant quality and a tachinid parasitoid interact to affect the survival and host-plant selection by a polyphagous herbivore. This herbivore, Grammia geneura (Strecker) (Lepidoptera: Arctiidae), is a food-mixing caterpillar that feeds preferentially on forbs. A previous study suggested that G. geneura might eat certain host species for reasons other than benefits of physiological utilization. We hypothesized that host-plant mediated defenses could act against parasitoids, the major mortality agents of late instar G. geneura . Field observations indicated that caterpillars sometimes survived an attack by the parasitoid Exorista mella Walker (Diptera: Tachinidae) in nature. Laboratory experiments showed that the survival of parasitized caterpillars increased on acceptable but nutritionally inferior host-plant species, indicating that anti-parasitoid defense may explain host-plant selection in this dietary generalist. We found no indication that host-plant selection changed according to the parasitism status of individual caterpillars.  相似文献   

14.
The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but also the entire metabolome. Metabolomes are the final products of genotypes and are constrained by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from three closely related Pinus species with distant coevolutionary histories with the caterpillar of the processionary moth respond similarly to its attack. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the species and the responses to folivory reflected their macroevolutionary relationships, with Ppinaster having the most divergent metabolome. The concentrations of terpenes were in the attacked trees supporting the hypothesis that herbivores avoid plant individuals with higher concentrations. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant–insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade‐offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant–insect coevolution.  相似文献   

15.
1. Plant–plant communication has been found to affect interactions between herbivores and plants in several model systems. In these systems, herbivore‐induced volatile chemical cues are emitted and perceived by other plants (receivers), which subsequently change their defensive phenotypes. Most studies have focused on how the effects of volatile cues affect plant damage, whereas herbivore performance has rarely been examined. 2. In this study, it is shown that plant–plant communication between willows reduced the growth rate, feeding rate, and conversion efficiency of some individuals but not others of a generalist caterpillar, Orgyia vetusta. 3. Using a paired, no‐choice trial design, there was substantial variation between caterpillar individuals in their response to willows that had been induced with a volatile plant–plant cue. This variation was explained by feeding parameters of the individual herbivores. Individuals behaved similarly when fed induced and non‐induced willow leaves. Specifically, growth rates of caterpillars that grew rapidly on non‐induced willow leaves were negatively affected by plant–plant cues, but growth rates of caterpillars that grew slowly on non‐induced willow leaves were not affected by the responses to volatiles from neighbouring willows. 4. Induction by volatile plant–plant cues reduced the growth rates of those individual herbivores that caused the greatest damage to willow, but had little effect on weak growers.  相似文献   

16.
Insects have a highly developed olfactory sensory system, mainly based in their antennae, for the detection and discrimination of volatile compounds in the environment. Electroantennogram (EAG) response profiles of five different insect species, Drosophila melanogaster, Heliothis virescens, Helicoverpa zea, Ostrinia nubilalis and Microplitis croceipes, showed different, species-specific EAG response spectra to 20 volatile compounds tested. The EAG response profiles were then reconstructed for each compound across the five insect species. Most of the compounds could be distinguished by comparing the response spectra. We then used a four-antenna array, called a Quadro-probe EAG, to see if we could discriminate among odorants based on the relative EAG amplitudes evoked when the probe was placed in plumes in a wind tunnel and in a field. Stable EAG responses could be simultaneously and independently recorded with four different insect antennae mounted on the Quadro-probe, and different volatile compounds could be distinguished in real time by comparing relative EAG responses with a combination of differently tuned insect antennae. Regardless of insect species or EAG amplitudes, antennae on the Quadro-probe maintained their responsiveness with higher than 1 peak/s of time resolution.  相似文献   

17.
Plant volatiles function as important signals for herbivores, parasitoids, predators, and neighboring plants. Herbivore attack can dramatically increase plant volatile emissions in many species. However, plants do not only react to herbivore-inflicted damage, but also already start adjusting their metabolism upon egg deposition by insects. Several studies have found evidence that egg deposition itself can induce the release of volatiles, but little is known about the effects of oviposition on the volatiles released in response to subsequent herbivory. To study this we measured the effect of oviposition by Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) moths on constitutive and herbivore-induced volatiles in maize (Zea mays L.). Results demonstrate that egg deposition reduces the constitutive emission of volatiles and suppresses the typical burst of inducible volatiles following mechanical damage and application of caterpillar regurgitant, a treatment that mimics herbivory. We discuss the possible mechanisms responsible for reducing the plant’s signaling capacity triggered by S. frugiperda oviposition and how suppression of volatile organic compounds can influence the interaction between the plant, the herbivore, and other organisms in its environment. Future studies should consider oviposition as a potential modulator of plant responses to insect herbivores.  相似文献   

18.
Herbivores are among the most pervasive selective forces acting on plants, and the number of plant chemicals that presumably evolved for defense against herbivory is immense. In contrast, biologists are only beginning to appreciate the important roles that architectural traits can play in antiherbivore defense. One putative architectural-resistance trait is the nodding stem apex of some goldenrods (Solidago; Asteraceae). Individuals of S. altissima genets that undergo temporary nodding in the late spring (i.e., "candy-cane" ramets) have been shown to be more resistant than individuals of erect-stemmed genets to certain apex-attacking herbivores. We tested the hypothesis that the greater resistance of candy-cane ramets is accomplished by the ramets' "ducking" from the herbivores. In a greenhouse experiment, nodding candy-cane ramets were significantly more resistant to oviposition by the gall-inducing fly Eurosta solidaginis than were ramets of the same genets that had been experimentally straightened. The straightened candy-cane stems were just as susceptible to ovipositions as were ramets of erect-stemmed genets. Thus, ducking indeed appears to confer a resistance advantage to candy-cane genets of S. altissima.  相似文献   

19.
Males of the noctuid moths, Heliothis virescens and H. subflexa locate mates based on species-specific responses to female-emitted pheromones that are composed of distinct blends of volatile compounds. We conducted genetic crosses between these two species and used AFLP marker-based mapping of backcross families (H. subflexa direction) to determine which of the 30 autosomes in these moths contained quantitative trait loci (QTL) controlling the proportion of specific chemical components in the pheromone blends. Presence/absence of single H. virescens chromosomes accounted for 7-34% of the phenotypic variation among backcross females in seven pheromone components. For a set of three similar 16-carbon acetates, two H. virescens chromosomes interacted in determining their relative amounts within the pheromone gland and together accounted for 53% of the phenotypic variance. Our results are discussed relative to theories about population genetic processes and biochemical mechanisms involved in the evolution of new sexual communication systems.  相似文献   

20.
Studies on numerous insect species suggest that male-produced sex pheromones play a role in attracting females; as aphrodisiacs, making females more quiescent; or as a means of inhibiting competing males. Male heliothine moths display abdominal hairpencils during courtship, but the specific effects of the odors released on female behavior have not yet been elucidated. This study investigates the role of male hairpencil compounds in female Heliothis virescens mating behavior. Female H. virescens were exposed to filter paper loaded with hairpencil extracts of male H. virescens, Heliothis subflexa and Helicoverpa zea, and observed for behavioral responses to odors. Single synthetic compounds found in the H. virescens hairpencil blend were also tested. In mating assays between single male and female H. virescens it was found that: (i) antennectomized females mated less frequently than sham-operated females; (ii) females mated less frequently with males whose hairpencils had been surgically removed; (iii) females mated with males with ablated hairpencils if a filter paper loaded with one male equivalent of H. virescens hairpencil extract was presented simultaneously; and (iv) this effect was species-specific, as presentation of H. subflexa or H. zea hairpencil extracts did not restore mate acceptance. This study suggests that odors released by male hairpencils are important in mate acceptance by female H. virescens, and may play a role in mate choice and species isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号