首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The PSI core complex prepared from cucumber cotyledons, which contains 80 chlorophylls per reaction center (P700) and eight polypeptides with apparent molecular masses of 65/63, 20, 19.5, 18.5, 17.5, 7.6, and 5.8 kDa, has been shown to catalyze the light-dependent transfer of electrons from plastocyanin to ferredoxin. The "native" PSI complex, which contains more than fifteen polypeptides and 120 chlorophylls per P700, did not show higher activity. Any attempt to deplete subunit(s) of the core complex decreased its activity. These results suggest that in addition to light-harvesting chlorophyll a/b protein complexes, several genes of psaA-psaK, which have been proposed as components of PSI complex, are not involved in the activity of PSI complex. It was also found that the amount of 18.5-kDa polypeptide in the PSI complex affects the activity: when this polypeptide was largely depleted, the complex was almost inactive. The inactivation was due to inhibition of electron transfer from plastocyanin to photooxidized P700. Chemical cross-linking and N-terminal amino acid sequencing experiments indicated that the 18.5-kDa polypeptide is the plastocyanin-docking protein and the psaF gene product. The function of the psaF gene product was discussed.  相似文献   

2.
Plastocyanin is specifically cross-linked by incubation with N-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) to a subunit of photosystem I in stroma lamellae and in isolated photosystem I complex. SDS-PAGE shows the disappearance of a 18.5 kDa subunit and the appearance of a new 31.5 kDa protein which was recognized by anti-plastocyanin antibodies. The isolated subunit was identified by its N-terminal amino acid sequence as the mature peptide coded by the nuclear gene psaF [Steppuhn et al. (1988) FEBS Lett. 237, 218–224]. P700+ was reduced by cross-linked plastocyanin with the same halftime of 13 μs as found in the native complex. This is evidence that cross-linking conserved the orientation of the complex and that the 18.5 kDa subunit provides the conformation of photosystem I necessary for the extremely rapid electron transfer from plastocyanin to P700+.  相似文献   

3.
R M Wynn  J Omaha  R Malkin 《Biochemistry》1989,28(13):5554-5560
Photosystem I (PSI) complexes have been isolated from two cyanobacterial strains, Synechococcus sp. PCC 7002 and 6301. These complexes contain six to seven low molecular mass subunits in addition to the two high molecular mass subunits previously shown to bind the primary reaction center components. Chemical cross-linking of ferredoxin to the complex identified a 17.5-kDa subunit as the ferredoxin-binding protein in the Synechococcus sp. PCC 6301-PSI complex. The amino acid sequence of this subunit, deduced from the DNA sequence of the gene, confirmed its identity as the psaD gene product. A 17-kDa subunit cross-links to the electron donor, cytochrome c-553, in a manner analogous to the cross-linking of plastocyanin to the higher plant PSI complex. Using antibodies raised against the spinach psaC gene product (a 9-kDa subunit which binds Fe-S centers A and B), we identified an analogous protein in the cyanobacterial PSI complex.  相似文献   

4.
PSI-G is an 11 kDa subunit of PSI in photosynthetic eukaryotes. Arabidopsis thaliana plants devoid of PSI-G have a decreased PSI content and an increased activity of NADP(+) photoreduction in vitro but otherwise no obvious phenotype. To investigate the biochemical basis for the increased activity, the kinetic parameters of the reaction between PSI and plastocyanin were determined. PSI-G clearly plays a role in the affinity for plastocyanin since the dissociation constant (K(D)) is only 12 muM in the absence of PSI-G compared to 32 muM for the wild type. On the physiological level, plants devoid of PSI-G have a more reduced Q(A). This indicates that the decreased PSI content is due to unstable PSI rather than an adaptation to the increased activity. In agreement with this indication of decreased stability, plants devoid of PSI-G were found to be more photo-inhibited both at low temperature and after high light treatment. The decreased PSI stability was confirmed in vitro by measuring PSI activity after illumination of a thylakoid suspension which clearly showed a faster decrease in PSI activity in the thylakoids lacking PSI-G. Light response of the P700 redox state in vivo showed that in the absence of PSI-G, P700 is more reduced at low light intensities. We conclude that PSI-G is involved in the binding dynamics of plastocyanin to PSI and that PSI-G is important for the stability of the PSI complex.  相似文献   

5.
Ferredoxin Cross-Links to a 22 kD Subunit of Photosystem I   总被引:15,自引:8,他引:7       下载免费PDF全文
We have used a cross-linking approach to study the interaction of ferredoxin (Fd) with photosystem I (PSI). The cross-linking reagent N-ethyl-3-(3-dimethylaminopropyl) carbodiimide was found to cross-link spinach Fd to a 22 kilodalton subunit of PSI in both isolated spinach (Spinacia oleracea) PSI complexes and spinach thylakoid membranes. The product had an apparent molecular weight of 38 kilodaltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and was identified as a cross-linked product using specific antibodies to Fd and the 22 kilodalton subunit. In both a native PSI complex (200 Chl/P700) and a PSI core complex (100 Chl/P700), a second cross-linked product at 36 kilodaltons was seen. The latter cross-reacted with an antibody to Fd but did not cross-react with antibodies directed against the 24.3, 22, 19, 17.3 or 8.5 kilodalton, or psaC subunits of PSI. Its composition remains to be determined. In thylakoids only the 38 kilodalton product was observed along with a cross-linked complex of Fd and Fd:NADP+ reductase.  相似文献   

6.
Agnieszka Zygadlo  Dario Leister 《BBA》2005,1708(2):154-163
PSI-G is an 11 kDa subunit of PSI in photosynthetic eukaryotes. Arabidopsis thaliana plants devoid of PSI-G have a decreased PSI content and an increased activity of NADP+ photoreduction in vitro but otherwise no obvious phenotype [P.E. Jensen, L. Rosgaard, J. Knoetzel, H.V. Scheller, Photosystem I activity is increased in the absence of the PSI-G subunit. J. Biol. Chem. 277, (2002) 2798-2803.]. To investigate the biochemical basis for the increased activity, the kinetic parameters of the reaction between PSI and plastocyanin were determined. PSI-G clearly plays a role in the affinity for plastocyanin since the dissociation constant (KD) is only 12 μM in the absence of PSI-G compared to 32 μM for the wild type. On the physiological level, plants devoid of PSI-G have a more reduced QA. This indicates that the decreased PSI content is due to unstable PSI rather than an adaptation to the increased activity. In agreement with this indication of decreased stability, plants devoid of PSI-G were found to be more photoinhibited both at low temperature and after high light treatment. The decreased PSI stability was confirmed in vitro by measuring PSI activity after illumination of a thylakoid suspension which clearly showed a faster decrease in PSI activity in the thylakoids lacking PSI-G. Light response of the P700 redox state in vivo showed that in the absence of PSI-G, P700 is more reduced at low light intensities. We conclude that PSI-G is involved in the binding dynamics of plastocyanin to PSI and that PSI-G is important for the stability of the PSI complex.  相似文献   

7.
The reduction of the photo-oxidized special chlorophyll pair P700 of photosystem I (PSI) in the photosynthetic electron transport chain of eukaryotic organisms is facilitated by the soluble copper-containing protein plastocyanin (pc). In the absence of copper, pc is functionally replaced by the heme-containing protein cytochrome c6 (cyt c6) in the green alga Chlamydomonas reinhardtii. Binding and electron transfer between both donors and PSI follows a two-step mechanism that depends on electrostatic and hydrophobic recognition between the partners. Although the electrostatic and hydrophobic recognition sites on pc and PSI are well known, the precise electrostatic recognition site on cyt c6 is unknown. To specify the interaction sites on a molecular level, we cross-linked cyt c6 and PSI using a zero-length cross-linker and obtained a cross-linked complex competent in fast and efficient electron transfer. As shown previously, cyt c6 cross-links specifically with the PsaF subunit of PSI. Mass spectrometric analysis of tryptic peptides from the cross-linked product revealed specific interaction sites between residues Lys27 of PsaF and Glu69 of cyt c6 and between Lys23 of PsaF and Glu69/Glu70 of cyt c6. Using these new data, we present a molecular model of the intermolecular electron transfer complex between eukaryotic cyt c6 and PSI.  相似文献   

8.
Kinetic studies on a cross-linked complex between plastocyanin cytochrome f   总被引:2,自引:0,他引:2  
A cross-linked complex between plastocyanin and cytochrome f was prepared by incubation in the presence of a water soluble carbodiimide and its kinetic properties were studied. The optical spectra, oxidation-reduction potentials and isoelectric pH of plastocyanin and cytochrome f did not change upon the formation of the cross-linked complex. Studies on the ionic strength effect on the electron transfer rate from cross-linked plastocyanin to ferricyanide indicated that the negative charge on the reaction site of plastocyanin was masked upon the cross-linking. It was also suggested that the sign of the net charge near the cytochrome f heme edge changed from positive to negative upon the cross-linking. On the other hand, electrostatic interactions between cross-linked plastocyanin and P700 seemed to be essentially the same as those in the case of native plastocyanin, although the rate of electron transfer from cross-linked plastocyanin to P700 was severely reduced. We also measured the intra-complex electron transfer from cytochrome f to plastocyanin. This suggested that the covalently cross-linked complex is a valid model of the electron transfer encounter complex. Based on these results, the reaction sites of plastocyanin with P700 and cytochrome f were discussed.  相似文献   

9.
The PsaF polypeptide of photosystem I (PSI) is located on the lumen side of the thylakoid membrane and its precise role is not yet fully understood. Here we describe the isolation of a psaF-deficient mutant of the green alga Chlamydomonas reinhardtii generated by co-transforming the nuclear genome of the cw15-arg7A strain with two plasmids: one harboring a mutated version of the psaF gene and the other containing the argininosuccinate lyase gene conferring arginine prototrophy. This psaF mutant still assembles a functional PSI complex and is capable of photoautotrophic growth. However, electron transfer from plastocyanin to P700+, the oxidized reaction center chlorophyll dimer, is dramatically reduced in the mutant, indicating that the PsaF subunit plays an important role in docking plastocyanin to the PSI complex. These results contrast with those obtained previously with a cyanobacterial psaF-, psaJ- double mutant where no phenotype was apparent.  相似文献   

10.
By using a hydroxyapatite column, the five major Photosystem I (PSI) subunits (PsaA,-B,-C,-D,-E) solubilized by sodium dodecyl sulfate (SDS) were fractionated from a spinach PSI reaction center preparation. Another small (5-6 kDa) polypeptide was also separated, and purified to homogeneity. Mass spectroscopy yielded its molecular weight to be 5942 +/- 10. This polypeptide had an N-terminal sequence homologous to those of previously reported 5-kDa subunits from spinach and wheat and a 6.1-kDa subunit of Chlamydomonas, which had all been assigned to Photosystem II (PSII) and designated as PsbW. However, we found similar 5-kDa polypeptides with highly conserved N-terminal sequences ubiquitously in PSI particles from other plants including Daikon (Raphanus sativus, Japanese radish), Chingensai (Brassica parachinensis, Chinese cabbage), parsley and Shungiku (Chrysanthemum coronarium, Garland chrysanthemum) as well. Preparations of spinach PSI particles prepared by using a mild detergent (digitonin) had this 5-kDa subunit, while PSII particles did not. Moreover, a bare-bone PSI reaction center preparation consisting of PsaA/B alone had a more than stoichiometric amount of this 5-kDa polypeptide. A mechanically (without detergent) fractionated stroma thylakoid preparation from Phytolacca americana, which lacked other PSII subunits, also contained this 5-kDa subunit. Thus, we propose that this 5-kDa polypeptide, previously designated as a PSII subunit (PsbW), is an integral subunit of PSI as well.  相似文献   

11.
The plastocyanin binding domain of photosystem I.   总被引:2,自引:0,他引:2       下载免费PDF全文
The molecular recognition between plastocyanin and photosystem I was studied. Photosystem I and plastocyanin can be cross-linked to an active electron transfer complex. Immunoblots and mass spectrometric analysis of proteolytic peptides indicate that the two negative patches conserved in plant plastocyanins are cross-linked with lysine residues of a domain near the N-terminus of the PsaF subunit of photosystem I. Conversion of these negative to uncharged patches of plastocyanin by site-directed mutation D42N/E43Q/D44N/E45Q and E59Q/E60Q/D61N respectively, reveals the first patch to be essential for the electrostatic interaction in the electron transfer complex with photosystem I and the second one to lower the redox potential. The domain in PsaF, not found in cyanobacteria, is predicted to fold into two amphipathic alpha-helices. The interacting N-terminal helix lines up six lysines on one side which may guide a fast one-dimensional diffusion of plastocyanin and provide the electrostatic attraction at the attachment site, in addition to the hydrophobic interaction in the area where the electron is transferred to P700 in the reaction center of photosystem I. This two-step interaction is likely to increase the electron transfer rate by more than two orders of magnitude in plants as compared with cyanobacteria. Our data resolve the controversy about the function of PsaF.  相似文献   

12.
The PSI-N subunit of photosystem I (PSI) is restricted to higher plants and is the only subunit located entirely in the thylakoid lumen. The role of the PSI-N subunit in the PSI complex was investigated in transgenic Arabidopsis plants which were generated using antisense and co-suppression strategies. Several lines without detectable levels of PSI-N were identified. The plants lacking PSI-N assembled a functional PSI complex and were capable of photoautotrophic growth. When grown on agar media for several weeks the plants became chlorotic and developed significantly more slowly. However, under optimal growth conditions, the plants without PSI-N were visually indistinguishable from the wild-type although several photosynthetic parameters were affected. In the transformants, the second-order rate constant for electron transfer from plastocyanin to P700+, the oxidized reaction centre of PSI, was only 55% of the wild-type value, and steady-state NADP+ reduction was decreased to a similar extent. Quantum yield of oxygen evolution and PSII photochemistry were about 10% lower than in the wild-type at leaf level. Photochemical fluorescence quenching was lowered to a similar extent. Thus, the 40-50% lower activity of PSI at the molecular level was much less significant at the whole-plant level. This was partly explained by a 17% increase in PSI content in the plants lacking PSI-N.  相似文献   

13.
Structural and functional analysis of the reducing side of photosystem I   总被引:2,自引:0,他引:2  
Structural analysis of the reducing side of photosystem I (PSI) has been carried out using chemical cross-linking and monospecific antibodies. Incubation of PSI isolated from barley (Hordeum vulgare L.) with the hydrophilic cross-linking agent N-ethyl-3-[3-(dimethylamino) propyl]-carbodiimide leads to cross-linking of the PSI-D subunit with the PSI-E and PSI-H subunits. In the presence of ferredoxin, cross-linking results in the formation of cross-linked products composed of PSI-D, PSI-E and ferredoxin and in a block in steady state NADP+ photoreduction. No cross-linking of ferredoxin occurs at elevated ionic strength or using heat-denatured ferredoxin. Cross-linking of ferredoxin does not inhibit electron transfer from plastocyanin to methyl viologen. Steady state NADP+ photoreduction was analyzed in PSI or thyla-koids incubated with antibodies against individual PSI subunits. Incubation with antibodies against PSI-C, -H, -I, or -L had no effect on PSI activity, whereas antibodies against PSI-D or PSI-E had similar effects and caused a large decrease in activity. The results provide evidence that the PSI-D and PSI-E subunits are localized on the reducing side of PSI, forming a barrier between PSI-C and the stroma as well as a docking site for ferredoxin. The PSI-H subunit has an exposed, stromal domain but this does not appear to contribute to the ferredoxin docking.  相似文献   

14.
The major outer membrane protein of Legionella pneumophila exhibits an apparent molecular mass of 100 kDa. Previous studies revealed the oligomer to be composed of 28- and 31-kDa subunits; the latter subunit is covalently bound to peptidoglycan. These proteins exhibit cross-reactivity with polyclonal anti-31-kDa protein serum. In this study, we present evidence to confirm that the 31-kDa subunit is a 28-kDa subunit containing a bound fragment of peptidoglycan. Peptide maps of purified proteins were generated following cyanogen bromide cleavage or proteolysis with staphylococcal V8 protease. A comparison of the banding patterns resulting from sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed a common pattern. Selected peptide fragments were sequenced on a gas phase microsequencer, and the sequence was compared with the sequence obtained for the 28-kDa protein. While the amino terminus of the 31-kDa protein was blocked, peptide fragments generated by cyanogen bromide treatment exhibited a sequence identical to that of the amino terminus of the 28-kDa protein, but beginning at amino acid four (glycine), which is preceded by methionine at the third position. This sequence, (Gly-Thr-Met)-Gly-Pro-Val-Trp-Thr-Pro-Gly-Asn ... , confirms that these proteins have a common amino terminus. An oligonucleotide synthesized from the codons of the common N-terminal amino acid sequence was used to establish by Southern and Northern (RNA) blot analyses that a single gene coded for both proteins. With regard to the putative porin structure, we have identified two major bands at 70 kDa and at approximately 120 kDa by nonreducing SDS-PAGE. The former may represent the typical trimeric motif, while the latter may represent either a double trimer or an aggregate. Analysis of these two forms by two-dimensional SDS-PAGE (first dimensions, nonreducing; second dimensions, reducing) established that both were composed of 31- and 28-kDa subunits cross-linked via interchain disulfide bonds. These studies confirm that the novel L. pneumophila major outer protein is covalently bound to peptidoglycan via a modified 28-kDa subunit (31-kDa anchor protein) and cross-linked to other 28-kDa subunits via interchain disulfide bonds.  相似文献   

15.
Ferredoxin has been effectively cross-linked to photosystem I complex by treatment of purified particles or thylakoids with N-ethyl-3-(3-dimethylaminopropyl)carbodiimide, a zero-length cross-linker which stabilizes protein-protein electrostatic interactions. Analysis of photosystem I polypeptide composition after such a treatment showed a specific decrease of the 20-kDa subunit and the appearance of a new component of about 42 kDa which was recognized by the anti-ferredoxin antibody. Cross-linking of ferredoxin to thylakoids allowed the membrane preparation to photoreduce cytochrome c without requiring exogenous ferredoxin, whereas photosystem I particles purified from treated thylakoids were inactivated in the NADP+ photoreduction activity. From these results, it can be inferred that the polypeptide of 20 kDa is the photosystem I subunit which interacts with ferredoxin during the photosynthetic electron transport.  相似文献   

16.
The murine interleukin 2 (IL-2) receptor is a 55- to 60-kDa glycoprotein (p58) that binds IL-2 at a high and low affinity. In this investigation, we have identified sublines of EL4 that vary in their capacity to express high affinity IL-2 receptors after transfection of the IL-2 receptor cDNA. These and other cell populations were used to determine whether unique membrane molecules were specifically associated with the high affinity IL-2 receptor. Irreversible chemical cross-linking of [125I]IL-2 to only high affinity IL-2 receptors resulted in detection of IL-2 cross-linked to p58 as a 70- to 75-kDa band and other complexes of 90 to 95 kDa, 115 kDa, 150 kDa, 170 to 190 kDa, and 245 kDa. Antibodies specific for p58 resulted in precipitation of each of these complexes. However, disruption of noncovalent interactions prior to immunoprecipitation resulted in an inability to detect the material at 90 to 95 kDa. Therefore, we conclude that this complex most likely represented IL-2 cross-linked to a 75- to 80-kDa subunit that was noncovalently associated with p58. The other complexes greater than 150 kDa may represent these subunits cross-linked to each other. The detection of all the cross-linked complexes larger than 75 kDa appeared to be directly related to formation of high affinity IL-2 receptors because IL-2 was cross-linked only to p58 for three cell lines that exclusively expressed low affinity IL-2 receptors. Thus, high affinity murine IL-2 receptors are comprised of at least one alpha (p58)- and beta (p75)-subunit. Our data also raise the possibility of a more complex subunit structure.  相似文献   

17.
The electrophoretic mobility of radioiodinated follitropin (FSH) alpha and beta subunits as well as the alpha beta dimer changed markedly depending on the concentration of reducing agents such as dithiothreitol. The changes were more dramatic in the beta subunit than in the alpha subunit. 125I-FSH, complexed to the receptor on porcine granulosa cells or in Triton X-100 extracts, was cross-linked with a cleavable (nondisulfide) homobifunctional reagent, solubilized in sodium dodecyl sulfate without reducing agents, and electrophoresed. The cross-linked sample revealed three bands of high molecular mass, in addition to the hormone subunit and dimer bands. The band of lightest mass, 110 kDa, was the major band and the other two of 76 and 62 kDa were barely noticeable. Upon reduction with dithiothreitol, the 110-kDa band decreased while the 76- and 62-kDa bands increased, indicating the existence of disulfides between components of the 110-kDa complex. Formation of the disulfide-linked complexes requires 125I-FSH, specifically bound to the hormone receptor and cross-linking, and can be prevented with an excess of native FSH but not human choriogonadotropin. Complex formation was independent of blocking free sulfhydryl groups with N-ethylmaleimide. When the cross-linked complexes were reduced in the gel matrix and analyzed on fresh gels, the 76- and 62-kDa complexes were generated from the 110-kDa band, indicating the loss of two components. The lost components were estimated to be at 14 and 34 kDa. The rate of formation and cleavage of the cross-linked complexes indicated a sequential and incremental addition of 22-, 14-, and 34-kDa components to the FSH alpha beta dimer. The results of reduction of the cross-linked complexes demonstrate the existence of disulfide linkage between the three components.  相似文献   

18.
Radioiodinated human choriogonadotropin was affinity-cross-linked with a cleavable (nondisulfide) homobifunctional reagent to the hormone receptor on porcine granulosa cells and the solubilized sample was electrophoresed. Cross-linked samples revealed four additional bands of slower electrophoretic mobility in addition to the hormone alpha, beta, and alpha beta dimer bands. The four bands corresponded to masses of 68, 74, 102, and 136 kDa whereas the alpha beta dimer band corresponded to 50 kDa. Formation of the four bands requires the 125I-hormone to bind specifically to the receptor with subsequent cross-linking. Binding can be prevented by excess of native hormone but not by follitropin. A monofunctional analog of the cross-linking reagent failed to produce the four bands. They were also produced by cross-linking Triton X-100-solubilized hormone-receptor complexes. Reagent concentration-dependent cross-linking revealed that their formation was sequential; smaller complexes formed first and then larger ones. When gels of the cross-linked sample were treated with reagents that cleave covalent cross-links and then electrophoresed in a second dimension gel, 18-, 24-, 28-, and 34-kDa components were released, in addition to the alpha and beta subunits of the native hormone. Simultaneous peptide mapping of the cross-linked complexes in the gel matrix with Staphylococcus V8 protease or papain revealed progressive proteolysis to generate terminal fragments of 30 or 27 kDa, respectively. These fragments were unique to and commonly present in the 74-, 102-, and 136-kDa hormone-receptor complexes but were not produced by proteolysis of the cross-linked human choriogonadotropin (hCG) alpha beta dimer or the hCG alpha subunit. Apparently, the radioactively labeled segment(s) of the alpha subunit of 125I-hCG was cross-linked to the 24-kDa component. The results demonstrate the protein nature of the receptor and suggest that 125I-hCG was initially cross-linked to the 24-kDa component to generate the 74-kDa complex, then the 28- and 34-kDa components were sequentially cross-linked to the 24-kDa component in the 74-kDa complex to generate the 102- and 134-kDa complexes.  相似文献   

19.
Ferritin, an iron-sequestering and -binding protein, is localized to the vacuolar system in Calpodes ethlius larvae. The amount of iron-loaded ferritin in intact larval midgut can be increased by pretreatment with iron. When poly(A)+ RNA from control or iron-treated larvae was translated in vitro, a 24 kilodalton (kDa) protein was a major translation product. If the cell-free system was supplemented with dog pancreatic microsomes, the 24-kDa protein was not detectable: the major translation product was 28-30 kDa. The 24-kDa and 28- to 30-kDa proteins were identified as ferritin subunits by immunoprecipitation with anti-Manduca ferritin antibodies. Proteinase K digestion of the translation products showed that the 28- to 30-kDa subunit was targeted into the lumen of, and protected by, the microsomes. The change in molecular mass of the ferritin monomer was attributed to glycosylation of the 24-kDa subunit within the lumen of the microsomes. This was demonstrated by (i) the ability of the 28- to 30-kDa subunit, but not the 24-kDa subunit, to bind concanavalin A on Western blots and (ii) inhibition of the change in molecular mass from 24 to 28-30 kDa if tunicamycin is added to the microsomes. The results indicate that the Calpodes ferritin subunit was synthesized, targeted to microsomes, and glycosylated within their lumen in a rabbit reticulocyte cell-free system primed with midgut poly(A)+ RNA extracted from control or iron-treated larvae.  相似文献   

20.
Four structural proteins of Lelystad virus (Arteriviridae) were recognized by monoclonal antibodies in a Western immunoblotting experiment with purified virus. In addition to the 18-kDa integral membrane protein M and the 15-kDa nucleocapsid protein N, two new structural proteins with molecular masses of 45 to 50 kDa and 31 to 35 kDa, respectively, were detected. Monoclonal antibodies that recognized proteins of 45 to 50 kDa and 31 to 35 kDa immunoprecipitated similar proteins expressed from open reading frames (ORFs) 3 and 4 in baculovirus recombinants, respectively. Therefore, the 45- to 50-kDa protein is encoded by ORF3 and the 31- to 35-kDa protein is encoded by ORF4. Peptide-N-glycosidase F digestion of purified virus reduced the 45- to 50-kDa and 31- to 35-kDa proteins to core proteins of 29 and 16 kDa, respectively, which indicates N glycosylation of these proteins in the virion. Monoclonal antibodies specific for the 31- to 35-kDa protein neutralized Lelystad virus, which indicates that at least part of this protein is exposed at the virion surface. We propose that the 45- to 50-kDa and 31- to 35-kDa structural proteins of Lelystad virus be named GP3 and GP4, to reflect their glycosylation and the ORFs from which they are expressed. Antibodies specific for GP3 and GP4 were detected by a Western immunoblotting assay in swine serum after an infection with Lelystad virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号